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ABSTRACT 

The historical development of statistical mechanics over the last hundred years 
is outlined, culminating in the work of Ruelle and of Fisher in 1963. The 
'thermodynamic limit' is defined and conditions on intermolecular potentials 
and Iimit theorems are next examined as preliminaries to a detailed considera­
tion of the associated equivalence problem. In conclusion the Iimits of applic-

ability of thermodynamics are noted. 

I. INTRODUCTION 

In the early days of statistical mechanics, it was recognized that the laws 
of thermodynamics could be derived from molecular theory only for systems 
containing a large number of particles, i.e. for macroscopic systems. This 
was pointed out by Boltzmann 1 when introducing Stirling's formula, and 
it has been stated more explicitly by Gibbs2 in the foreward to his famous 
treatise on Elementary Principles in Statistical M echanics. He writes: 
'The laws of thermodynamics, as empirically determined, express the 
approximate and probable behaviour of systems of a great number of 
particles, or, more precisely, they express the laws of mechanics as they 
appear to beings who have not the fineness of perception to enable them to 
appreciate quantities of the order of magnitude of those which relate to 
single particles, and who cannot repeat their experiments often enough 
to obtain any but the mostprobable results. The laws of statistical mechanics 
apply to systems of any number of degrees of freedom and are exact. ... The 
laws of thermodynamics may be easily obtained from the principles of 
statistical mechanics of which they are an incomplete expression '. Gibbs2 

has also shown that in defining analogues of thermodynamic quantities 
conceptual difficulties can be avoided only if the number of particles is 
assumed to be very large. This may be illustrated by means of an example. 
If the statistical analogue of the entropy is defined by the canonical and the 
grand canonical ensemble respectively, it turns out that these quantities 
are different from each other. lt can be shown, however, that the grand 
canonical entropy may be expressed as the most probable value of the 
canonical quantity plus a term depending on the number of particles which 
becomes completely negligible for macroscopic systems. It is seen that 
Gibbs always had in mind a macroscopic but finite system. He was in 
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fact not interested in the problern how the laws of thermodynamics could 
be obtained from statistical mechanics in full mathematical rigour. This, 
however, is precisely the question on which the more recent development has 
focused attention and which nowadays is usually termed as 'asymptotic 
problern of statistical mechanics: 

In this new field the first great success was achieved in 1922 by Darwin 
and Fowler3

•
4 who treated quantum systems of non-interacting particles. 

The analogaus problern in classical statistics was solved by Khinchin5 

whose book was published in the U.S.A. in 1949. In spite of significant 
differences in the details of the mathematical technique, the underlying basic 
idea is the same in both methods, namely the use of a generating function 
which is nothing eise but the canonical partition function. This entails 
that in the final result the thermodynamic relation between the entropy 
and the Helmholtz free energy appears as the leading term of an asymptotic 
expansion. For later considerations, it will be useful to write down the 
essential results in a rather simple form. Let <I>(E) denote the Gibbs energy 
function, Q(ß) with ß = 1/kT the canonical partition function and E the 
average energy of a system of the canonical ensemble. Then in a first step 
one obtains for large N, if N is the number of particles, 

W(E) = exp (- ßE) exp (<P(E)) = _1_ (- ~ (E - E)
2
) O(N- 1) ( 1) 

Q(ß) (2nB)t exp 2 B + 
· where W(E) is the probability density (frequency function) of the energy in 
the canonical ensemble. It is seen that for very large systems, this probability 
density tends to a Gaussian. Now Iet us assume that the average energy E 
equals the microcanonical energy E*. Then, on taking logarithms and 
dividing by N, we obtain from equation 1 

N- 1<1>(E) = N- 1 lnQ(ß) + N- 1ßE + O(N- 1 lnN) (2) 

or, introducing thermodynamic quantities per particle, 

Ts(e, v) = - f(T, v) + e + O(N- 1 ln N) (3) 

Now, in the case of non-interacting particles, for N, E ~ oo at v = const. 
on the RHS the existence of the Iimit functions is trivial Thus passing to the 
limit we may safely conclude that on the LHS the Iimit function exists as 
well which immediately Ieads to the well-known thermodynamic relation 
between entropy and Helmholtz free energy. 

This was the state of affairs in 1949. It is now easy to see that the extension 
of the aforementioned results to interacting particles and other ensembles 
will meet with two additional problems. In the first place, the derivation of 
equation 1 is based on the centrallimit theorem of probability theory which 
means that the total energy Eis assumed to be a sum of N independent random 
variables. Obviously this is no Ionger true in the case of interacting particles. 
Secondly, for interacting particles the existence of the Iimit functions on the 
RHS of equations 2 and 3 is by no means trivial but will depend rather on 
the details of the intermolecular interaction. 

In the following period which starts in 1949 with van Hove's6 paper on a 
Iimit theorem for the canonical ensemble, several attempts were made to 
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solve the aforementioned problems for special cases. Some important 
results have been obtained but we cannot go into the details here and the 
interested reader is referred to the Iiterature 7 . We shall turn rather to the 
most recent development which was induced by the fundamental work of 
Ruelle8 and Fisher9 in 1963. 

II. DEFINITIONS. STATEMENT OF THE PROBLEM 

In what follows we shall frequently denote extensive parameters by X i 

and intensive parameters by Pt Remernhering that in the Gibbs fundamental 
equation the entropy is a function of extensive state variables only, any 
Massieu-Planck function q,k depending on k intensive parameters appears 
as a k-fold Legendre transform of the entropy, viz. 

i= 1 

satisfying the differential equation 

where 

aq,k 
-=P· axj 1 

(i ~ k < j) 

(4) 

(5) 

(6) 

Turning to statistical mechanics we first observe that any statistical 
ensemble depending on k intensive parameters generates the analogue of a 
Massieu-Planck function q,k by the equation 

(7) 

where Ek is the partition function ofthe ensemble and, for the sake ofsimplicity, 
Boltzmann's constant has been put equal to unity. The function q,k as defined 
by equation 7 satisfies a differential equation of the form of equation 5. 
On the other hand, in the semi-classical approximation we have 

k 

exp (<1\) =So ... So exp (- i~ PiXi) exp (cJ>)n dXi (8) 

That is to say that the partition function of the k-ensemble is the k-fold 
Laplace transform of the microcanonical partition function. 

It is easy to see and it can be shown explicitly that for finite systems 
equations 4 and 8 are not consistent with each other. We therefore consider 
a sequence of systems characterized by the variable x<:) = nx<rl) where 
X~1) is some fixed reference value and n ~ 1. Furthermore we introduce the 
notation 

<fJkn) = q,l")/X~">, 
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By 'thermodynamic Iimit' we mean the Iimit process 

n ~ oo for Pi = const., (i = 1, 2, ... , k) 

x i = const., (j = k + 1, ... n - 1) 
(10) 

Thus what has been called above the 'asymptotic problem' amounts to a 
study of the thermodynamic Iimit comprising the following subproblems: 

(a) Existence of the Iimit lim cp~n> and its derivatives (Iimit theorems) 
n-+oo 

(b) Consistency of the thermodynamic quantities defined with the aid of 
various ensembles (equivalence problem) 

(c) Thennodynamic stability 
( d) Phase transitions. 
These questions are closely connected with one another and therefore cannot 
be discussed independently. Here, however, we are mainly concerned with 
the equivalence problem. Questions (a) and (c) will be touched upon rather 
briefly whereas we shallleave out the problern of phase transitions. 

III. CONDITIONS ON INTERMOLECULAR POTENTIALS. 
LIMIT THEOREMS 

The existence of the Iimit functions will depend on assumptions on the 
intermolecular potentials. For one thing, the forces of attraction could be 
so strong that the system 'collapses' as the number of particles increases, 
so that <Pk diverges to + oo. On the other hand, the forces of repulsion could 
decrease so little with increasing separation that <Pk diverges to - oo. 
Following Fisher9

, we therefore make the following assumptions: 

(A) Condition of stability 
For the potential energy of a system of N interacting particles u<N) there 

exists a lower bound 

(11) 

for all values ofthe coordinates and all N, where uA is a fixed natural number. 
Potentials which satisfy condition A are called stable potentials. 

(~1) Condition of weak tempering 

Let us imagine that the N particles have been split up into two groups of 
N 1 and N 2 particles with Coordinates qi and ifJ respectively. The interaction 
energy between these groups will be denoted by u<Nt. N 2> (qi; qj). Then for all 
N 1 and N 2 and some arbitrary fixed R0 and u8 and e > 0 

u<Nt.N2)(q ...... · q ..... '.) ~ N1N2uB 
" J- -...:: R3+,; (12) 

if jiii - q}l ~ R ~ R0 holds for all i andj and (N 1 + N 2)/R3 +E is sufficiently 
small. 

296 



SOME ASPECTS OF THE THERMODYNAMIC LIMIT 

(82) Condition of strong tempering 

Under the same assumptions as before 

U(Nl. N2) (qi, i) ~ Q (13) 

whenever I qi - qj I ~ R 0 for all i and j. 
On the basis of the assumptions A and BI, Fisher9 has proved that for the 

canonical ensemble the Iimit qlf: exists and is a continuous convex and non­
decreasing function ofthe volume per particle v. From the convexity property 
which is essentially equivalent to thermodynamic stability conditions, 
existence and properties of the derivatives are obtained by the use of well­
known theorems on convex functions 10

. It cannot be shown, however, that 
we have 

ocp/( . ocpin) 
hm--­ov - n-+oo OV 

(14) 

as required for a complete statistical foundation of thermodynamics. 
Mathematically this shortcoming arises from the fact that convexity can 
only be proved for the Iimit function cp't. 

Analogaus results have been obtained for the grand canonical ensemble9 

whereas van der Linden 11 has proved a Iimit theorem for the microcanonical 
ensemble on the basis of assumptions A and B2. 

IV. EQUIVALENCE PROBLEM 

The formal nature of the equivalence problern becomes immediately 
obvious from the comparison of equations 4 and 8. Wehave to prove that, 
at the thermodynamic Iimit, the Laplace transformation of the statistical 
partition functions reduces asymptotically to the Legendre transformation 
of the Massieu-Planck functions. We may still ask, however, for the physical 
meaning of this problem. There are two possible answers which of course 
only elucidate two aspects of the same situation. In the first place we may 
consider that any statistical ensemble is linked conceptually with a particular 
physical situation of the system of interest. The microcanonical ensemble 
represents an isolated system, the canonical ensemble a system in contact 
with a heat bath, and similarly for the other ensembles. The laws of thermo­
dynamics, however, do not depend on a particular physical situation. Thus 
it must be shown that these •boundary conditions' become meaningless 
at the thermodynamic Iimit. On the other band we may Iook on the asymp­
totic expansion 3. It can be shown that the higher order terms arise from 
statistical fluctuations. In thermodynamics, however, this concept does not 
appear at all. We therefore must prove that fluctuations vanish asymptotic­
ally at the thermodynamic Iimit. 

The aforementioned physical aspects correspond closely to the mathe­
matical methods which in recent years have been applied to the general 
treatment of the equivalence problem. In the following we shall describe the 
essential features of these methods from a more physical point of view, 
again leaving out the mathematical details. 
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(i) Method of van der Linden and Mazur 
The first method due to van der Linden and Mazur1

L 
12 is based first on 

assumptions A and B2 of Section Ill and secondly on certain inequalities 
for the microcanonical ensemble. These essentially state that the phase 
volume is a never negative and never decreasing convex function of the 
energy. In a first step it is shown that the Iimit theorem for the microcanonical 
ensemble mentioned in Section Ill generates an analogaus Iimit theorem 
for the canonical ensemble. We briefly sketch the main idea of the proof. 
Let us imagine that the system is divided into two subvolumes with numbers 
of particles and energies N 1, E1 and N - N 1, E - E1 respectively. Then 
using a well-known formula for the microcanonical ensemble and the afore­
mentioned inequalities it is easily established that we must have for the phase 
volume 

(15) 

This property Ieads in fact to the Iimit theorem for the microcanonical 
ensemble. Since the right band member is a convolution integral, we obtain 
with the aid of the convolution theorem for the Helmholtz free energy per 
particle 

- N f(N) ~ - N 1 f(N 1) - (N - N 1) f(N - N 1) (16) 

Functions satisfying an inequality of this form are called subadditive 
functions. For these we have a Iimit theorem 13 which combined with assump­
tion A Ieads to the desired Iimit theorem for the canonical ensemble. 

In dealing with the equivalence problern itself the following ingenious 
device is used. First we generalize the above division to a division into n 
subsystems which are assumed to have equal energies E*, equal numbers 
of particles N* and equal volumes V*. Then, according to the theory of the 
microcanonical ensemble and condition B2 it must be true that 

s-:(E*, N*, V*) ;:::: <n>s*(E*, N*, V*) ;:::: s*(E*, N*, V*) (17) 

The left band member of this inequality is simply the entropy of the original 
system divided by the number of subsystems. In the second member the 
interaction between the subsystems is neglected but not the energy distri­
bution between them, i.e. they are assumed to be in thermal equilibrium. 
In the last member the subsystems are consjdered tobe isolated. Thus we have 
three different physical situations and we shall show that these differences 
become meaningless at the thermodynamic Iimit. 

The second member of expression 17 refers to an 'ideal system'. Hence, 
considering the subsystems as 'particles', we may apply Khinchin's 
argument. Passing to the Iimit n ~ oo for fixed N* [ which does not affect 
the last member of 17] we then obtain from equation 3 and the Iimit theorem 
for the microcanonical ensemble 

S 00(e, v) ~ - ß f(ß, v, N) + ße(ß, v, N) ;:::: s(e, v, N) (18) 

where N* has been replaced by N and quantities per particle have been 
introduced. Next we study the thermodynamic Iimit of a subsystem (N-+ oo, 
ß = const., v = const.). Under this process the first member becomes 
simply s00 [e(ß,v),v] and the last member converges to the same Iimit. 
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Hence, making use ofthe Iimit theorem for the canonical ensemble, we obtain 

(19) 

which is a special case of the thermodynamic relation 4. This argument 
can be carried through for all conceivable ensembles although the details 
become more complicated. Under stronger assumptions about the inter­
molecular forces (two-body central forces satisfying an additional condition) 
van der Linden14 has also proved equation 14. 

(ii) Method of Still, Hauhold and Münster 

The other approach due to Still, Hauhold and Münster15 is essentially a 
generalization of Khinchin 's method to interacting particles and any 
-;onceivable ensemble. In comparison with the first method, assumptions 
about intermolecular forces here enter only via Iimit theorems but they are 
not used explicitly. Furthermore thermodynamic relations are obtained as 
leading terms of asymptotic expansions. The underlying assumptions are 
essentially the existence of a Iimit theorem for the function qJ1 + 1 (P) and the 
exclusion of phase transition points. 

As explained in section I, we have first to prove that the frequency function 
W(y) with 

y =(X- X)/Bt (20) 

tends to a Gaussian at the thermodynamic Iimit. This probleiD is of con­
siderable interest in itself since in many applications the frequency function 
is assumed to be a Gaussian. Now it can be shown without difficulty that 
the sequence of characteristic functions 

1/J(n)(t) = J~: eity w<n>(y) dy (21) 

for n ~ oo converges to a Gaussian in any finite t-interval and, moreover, 
that the moments of the frequency function converge to the moments of a 
Gaussian with dispersion one. From this result, however, we cannot conclude 
that the functions 

w<n)(y) =- e-ity 1/J(n)(t) dt 1 J+oo · 
2n _

00 

(22) 

converge to a Gaussian. The reason isthat convergence of the 1/J(n)(t) has been 
proved only for finite t-intervals. Thus in performing the integral of equation 
22 we must have some knowledge about the 'tail' ofthe integrand. As shown 
by Mazur and van der Linden 16 this knowledge is indeed available for the 
canonical ensemble but unfortunately this is not true in the general case. To 
overcome this difficulty we replace the original frequency function by a 
'smoothed' frequency function W~">(y) which is obtained from the former by 
convolution with an appropriate smoothing function s<n>(y) in such a way 
that the smoothed frequency function remains normalized and non -negative. 
Thus we define 

(23) 

It is easy to see that the smoothing procedure is nothing eise but a local 
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averaging. This, however, means that the characteristic function is damped 
for large values oft. Since we know s<n>(y) explicitly this gives us the required 
knowledge about the tail. Therefore we are now able to show that for large 
n we have 

1 ( 1 (X- X)) W~">(X) = --.!_ exp - -.----[1 + O(n- 1 ln2 n)] 
(2nB) 2 2 B · 

(24) 

which is the generalization of equation 1. 
Although 'smoothing' or 'coarse graining' is nothing new in statistical 

mechanics we still wish to give some justification for the above procedure. 
This is achieved by showing rigorously that the functions W(">(y) and W~">(y), 
at the thermodynamic limit, cannot be distinguished by any conceivable 
macroscopic measurement. From equation 24 we obtain by a Straight­
forward argument 

(25) 

which on passing to the limit n ~ oo yields again the thermodynamic 
relation 4 and at the sametime proves the existence of q/1. Formally equation 
25 was proved only for smoothed functions. But it can be shown rigorously 
that (/)f~ 1 . s = ({)}'!{ 1 for all n. Then it follows from the uniqueness of the 
Legendre transformation, that there is one and only one function cp! satisfy­
ing the thermodynamic equation 4. Hence we are left with two possibilities. 
Either the 'true' limit function (/)r does not exist or does not satisfy equation 
4. Then 'smoothing' is a necessary step in the foundation of thermodynamics. 
Or the 'true' limit function cpf satisfies equation 4 as well, then it cannot be 
distinguished from the smoothed function. lndeed if we assume existence of 
a limit theorem for c.p1 (which has been avoided so far) then we can prove 
that ({)/ = (/)~ almost everywhere. 

Similar results are obtained for the derivatives of c.pr. In particular it can 
be shown that differentiation and passage to the thermodynamic Iimit 
commute. From this thermodynamic stability conditions are obtained in 
the generalform first given by Schottky, Ulich and Wagner 17 and it is shown 
that they are identical with conditions for the statistical fluctuations. 

V. LIMITS OF APPLICABILITY OF THERMODYNAMICS 
Up to now we have exclusively treated the formal derivation of thermo­

dynamics from statistical mechanics which necessarily requires the intro­
duction of the concept of an infinitely large system. However, experimental 
physics always deals with finite systems, so that we can expect this to impose 
certain bounds on the applicability of the thermodynamic formalism. These 
are determined by the neglected terms in equations 3 and 25 which have 
their origin in statistical fluctuations. Thus the domain of validity of thermo­
dynamics is determined by the condition that fluctuations are negligible 
with respect to the accuracy of measurements. In most cases this will be true 
for macroscopic systems. Planck 18

, however, has already discussed an 
interesting case where thermodynamics breaksdown even for finite macro­
scopic systems. 
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Consider a Debye crystal, say a cube of edge length 1 cm (N ~ 1021
) with 

characteristic temperature Bv = 102 °K which has been cooled to a tempera­
ture of 10- 5 °K. Then from a general formula derived by Münster 19 we have 

T (~~)o + ~E1 (~:~) 
0 
\~-~fvl~ (26) 

with 

E =~!:~Nk-'!:~-E=E +~NkB 
D 5 fJb' D 8 D 

(27) 

Numerical calculation shows that both terms of the RHS of equation 26 
are of the same order of magnitude 105[oK]- 1

. Thus, as stated already by 
Planck 18

, near the absolute zero the concepts of entropy and absolute 
temperature are no Ionger uniquely definable because fluctuations of energy 
become important. It is obvious that this has some bearing on the inter­
pretation of Nernst's heat theorem20

. 
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