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INTRODUCTION 
Originally a.c. polarography merely implied the study of the potential 

dependence ofthe periodically varying component ofthe cell current when the 
voltage applied to the electrodes of a polarographic cell has a small com­
ponent varying sinusoidally with time1• The term today embraces many 
techniques, often related to the simple technique introduced by Breyer and 
coworkersl but differing from it in detail and in complexity of apparatus and 
theory. The value of many a.c. techniques in analytical work is recognised, 
but what is less well appreciated is the potential value of a.c. polarography 
for the study of electrode processes. However, the gap between polarography 
and the study of electrode processes has narrowed in the last two decades 
and this trend is likely to continue as the advantages offered by the dropping 
mercury electrode ( d.m.e.), by automatic recording of data and by in situ 
formation of reactants find wider recognition. As more compact and more 
reliable a.c. polarographs of sophisticated design become available they may 
be used increasingly for the study of electrode processes as well as for purely 
analytical purposes. The former application demands a clear understanding 
of the factors inftuencing the impedance of the electrode-solution interface 
to alternating current. This impedance forms the subject of this paper but 
in view of the large number of "linear" and "non-linear" a.c. techniques 
already described and currently under development, no attempt will be 
made to derive expressions for the cell current when particular techniques 
are employed. lnstead attentionwill be focused on aperiodic (valid for any 
single frequency or any combination of frequencies) equivalent electrical 
circuits for the faradaic part of the interfacial impedance and for the entire 
impedance, particular attention being given to the influence of reactant 
adsorption on the im pedance. 

The faradaic impedance has been studied theoretically by many workers 
- Warburg2, Frumkin and coworkers3, Randles4, Gerischer5, Vetter6, 
Tachi7, Delahays, Matsuda9, SendalO and Lorenzll, to name but a few­
and periodic (valid for any single frequency) equivalent circuits for some 
systems have been derived. Account has been taken of complications intro­
duced by coupled chemical reactions, the diffuse double layer and specific 
adsorption of reactants. The treatments (for a review see ref. Sb) have 
usually led to explicit expressions for the faradaic current which although 
exact or reasonably exact solutions of the treated diffusion problems ( taking 
account of only one complication at a time), give a somewhat diffuse picture 
of the faradaic impedance when, as is often the case, several complications 
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occur simultaneously. In the present paper a basically different approach to 
the interfacial impedance is outlined which casts new light on the anatomy 
of the impedance and makes it possible to deduce almost instantaneously 
an aperiodic equivalent circuit for a system of great complexity. Once such 
a circuit has been obtained it is often, but not invariably, a trivial step to 
proceed further to the derivation of an explicit expression for the cell current. 
Such circuits are also of considerable help when the theory of coulostatic, 
galvanostatic and potentiostatic relaxation techniques is under consideration 
provided the deviation of the potential from the equilibrium value is small. 

ASSUMPTIONS 
All circuits appearing later refer to 1 cm2 ofthe electrode-solution interface. 

Any concentration ( Cr) usually is the mean or equilibrium value at the 
interface expressed in mole cm -3. A circuit is valid in a case in which reactants 
are formed in situ at the surface of the d.m.e. only if the activation over­
potential in the absence of the small alternating component of the potential 
is negligibly small. 

Relative surface excesses (Fr) ofreactants are expressed in mole cm-2 and 
unless otherwise stated it is assumed that the Henry's law isotherm is obeyed 
and that consequently it is possible to write 

Fr= yrCr (1) 

where yr, the adsorption coefficient ( cm) for reactant I, is a constant at 
constant potential. This assumption implies constancy of the activity 
coefficient ofthe reactant in its adsorbed state and hence low surface coverage. 
This is by no means an unrealistic simplification as several sensitive a.c. 
techniques make possible the use of exceptionally low reactant concentrations. 
I t is further assumed that at all times the interface is in equilibrium with 
the two bulk phases at the interface as regards the adsorption of all components 
of these phases. 

Reactants 0 and R in acharge transfer reaction which is formally written 
as 

0 + ne- ~ R (a) 

are assumed to be very minor constituents of the system and the supporting 
electrolyte concentration is supposed to be large enough to suppress electro­
migration in the neighbourhood of the interface connected with the diffuse 
double layer field. Mass transport of reactants by pure linear diffusion is 
assumed when the equilibrium between the phases is disturbed. 

No specific assumptions are made about the nature ofO or R which may be 
charged or uncharged entities. Usually 0 will be present in the solution 
but R may be located in either phase depending on the type of reaction. 
Reaction (a) and other coupled reactions may involve unmentioned 
reactants. If so, it is implicit that these additional reactants are present at 
sufficiently large concentration for all reactions to be treated as pseudo first 
order reactions. 

The variation ofthe potential from the mean value or from the equilibrium 
value is taken to be minute in comparison with R TjnF, where R, T and F 
have their usual significance. 
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CHARGE UTILIZATION AT THE 
ELECTRODE-SOLUTION INTERFACE 

So far few attempts have been made to discuss the thermodynamic theory 
of the electrode-solution interface when species present at the interface 
participate in an electrode reaction. Misconceptions about the theory are 
not difficult to find in the Iiterature and therefore we start with a qualitative 
discussion of the way in which charge supplied to the electrode is utilised at 
the interface. 

If the potential is suddenly made more negative then, as indicated 
schematically in Figure 1, cations of the supporting electrolyte tend to be 
transferred to the interface and anions ofthe supporting electrolyte present at 
the interface tend to be released into the solution. A transient current thus 

Solution Interface Electrode 

0 

Figure 1. Motion of ions and reactants when the potential is changed 

flows in the external circuit and this current is normally termed a non-faradaic 
current as it is connected solely with a change in the structure of the 
electrical double layer at the interface. If the solution also contains a 
reducible species 0 the change in potential may result in some reduction of 
0, forming R which may dissolve in the mercury phase. Additional current 
connected with this charge transfer reaction flows in the external circuit and 
this current is usually regarded as an independent current and is usually 
termed the faradaic current. The total current is the sum of these two 
supposedly independent currents. Unfortunately we find, if we look more 
deeply into this matter, that this artificial division of the current into two 
independent components has no strict thermodynamical basis although in 
cases where neither 0 nor R is adsorbed at the interface no errors are 
incurred by making such a division. 

This result stems from our inability to establish by experiment the form 
of an adsorbed component at the interface. We can determine the relative 
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surface excesses of the various components of the system but it is impossible, 
unless a particular model is assumed, to arrive at any conclusions about their 
form in the interfacial region. Thus experiment might indicate that the 
specific adsorption of an iodide ion at constant potential is on the average 
accompanied by the removal of say 0·75 electrons from the mercury surface. 
This might mean that for some of the time the adsorbed ions are co-valently 
bound to the electrode and hence that part of the current ftowing in the 
external circuit is connected with an electrode reaction. The current thus 
might be regarded as partly faradaic in nature. On the other hand it may 
be supposed that the charge on the adsorbed ions is unchanged at all times and 
that the current is purely non-faradaic in nature. Thermodynamic reasoning 
shows that we cannot distinguish by experiment between these two possi­
bilities. 

The reduction of 0 to R can be regarded as proceeding in three fairly 
distinct steps. First the adsorption of 0 forming an adsorbed entity which 
will be denoted by Ü 0

• Next the conversion of Ü 0 to R 0 , using 'the latter 
symbol to denote adsorbed R, and finally the release ofR 0 from the interface 
producing reactant R dissolved in the mercury phase. Usually the first step 
in this sequence will lead to the transfer of some charge to or from the 
mercury surface and the associated current might be termed faradaic or 
non-faradaic depending on whether the charge on Ü 0 is the same asthat on 
0, a point which cannot be settled by experiment. Similar uncertainty about 
the classification of the current associated with the last of the two subsequent 
steps also exists and we thus see that if the cell current in polarography is to 
be divided into two parts for descriptive reasons more precise definitions 
of the two current components are needed. 

In the present paper the "faradaic" current density is defined by 
equation (2) where cf> is the net rate (mole cm-2s-1) ofconversion of0° into 

ir = - nF cf> (2) 

R 0
• The two adsorption steps are formally represented by the (hypothetical) 

charge transfer reactions (b) and ( c) which do no more than indica te tha t, 

0 + a e- ~ Ü 0 (ads) 

R 0 (ads) + b e- ~ R 

(b) 

( c) 

on the average, a and b electrons respectively are supplied to the electrode 
when, at constant potential, one molecule of 0 is adsorbed from the solution 
and one molecule ofR is desorbed into the phase containing reactant R. The 
signs of a and b depend on the signs of (dyo/dE)c0 and (dyR/dE)cR. The 
"non-faradaic" current density inr is given at all times by Eq. (3) where Cct 

1 

inr = Cctl dE- aF dTo + bF dTR 
dt dt dt 

(3) 

is strictly the differential capacity for constant T o and TR, i.e. ( dq/dE) To, rR, 
where q is the charge density on the mercury surface.t For low values of the 
surface excesses it readily follows from the Gibbs adsorption isotherm that 
this capacity differs little from the capacity at the same potential in the 

t Cdt may alternatively be regarded as the differential capacity at infinite frequency. 
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absence of components 0 and R if the two adsorption coefficients y o and YR 
are large and not greatly potential dependent. The total current density is 

i = ir + inr (4) 

The assumption of equilibrium at the interface for reactions (b) and (c) 
simplifies the analysis of the "faradaie' part of the interfacial impedance as 
it is possible to ignore these reactions completely and consider simply the 
impedance associated with the overall reaction (a). Ifthis is clone, the surface 
excesses of reactants must not be ignored when the parts of the impedance 
connected with the diffusion of reactants are being considered. Also, it has 
to be bornein mind that any rate constants and transfer coefficients will be 
only apparent parameters. For example if this procedure is followed, for the 
rate of reduction of 0 we write krCo where kr is an apparent charge transfer 
rate constant, whereas we should write kr' To where k'r is the real rate constant. 
lf accurate adsorption data are available it isasimple matter to deduce the 
actual rate constants from apparent values referred to reactants 0 or R. 
If the variation of adsorption coefficients with potential is known it is possible 
also to calculate the actual transfer coefficients. Thus there is no need initially 
to take account of the detailed mechanism in so far as the faradaic part of 
the impedance is concerned. The adsorption steps must, however, be 
allowed for when the non-faradaic part is being considered, though in 
practice the effect of reactant adsorption on this part of the impedance is 
often much less important than its influence on the faradaic part. 

SIMPLE CHARGE TRANSFER REACTION 
We consider first the aperiodic circuit for the faradaic impedance associated 

with the simple charge transfer reaction 
kr 

0 + n e- ~ R 
kr 

when the system is initially at equilibrium and this equilibrium is slightly 
disturbed by a small aperiodic change of potential. The total overpotential 
11E when the system is not at equilibrium is the sum of terms due to mass 
transport polarization and an activation overpotential. The faradaic current 
density is given by Eq. (5) where C0 (t) and CR(t) are concentrations of 

ir = - nF[krCo(t) exp( - ai1EnFJRT) - krCR(t) exp(l - a)!1ErifjRT] (5) 

reactants at the interface at the time in question, the (apparent) rate constants 
kr and kr refer to the initial equilibrium state and a is the (apparent) transfer 
coefficient of the forward process, the reduction of 0. This equation, after 
writing Co+ 11Co for Co(t) and eR+ /1CR for CR(t) where Co and eR are 
equilibrium values, expanding the exponentials and dropping terms of high 
order, can be written in the form 

(6) 

The first term on the right hand side of this equation is the change in the 
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"instantaneous" equilibrium potential due to the small change in the 
concentration of reactant 0 at the interface. The second term is the corres­
ponding change due to the change in the concentration of R and the last 
term is the activation overpotential due to the irreversibility of the charge 
transfer reaction. Thus at all times the total overpotential !:l.E can be re­
garded as the sum of three independent components which we will denote 
by !:l.Eo, !:l.ER and !:l.Ect· We expect the equivalent circuit to consist of three 
parts connected in series as indicated in Figure 2(a) since each component 
of the overpotential is linearly related to the magnitude of ir if all other factors 

r 
TL(R) 

(b) !J.E Rct 

1 
\~VV~F\fV\Ar~ 

~-------T_L_(O_) ____ ~•~ 

1 
}zR 

(c) 

}Zw=Z0+ZR 
Rct -

I }zo T 
Figure 2. Equivalent circuits for the faradaic impedance: (a) elementary circuit; (b) aperiodic 

circuit; (c) periodic circuit 

remain constant and the condition !:l.E~RTfnF is satisfied. The impedances 
Zo and ZR across which the potential components !:l.Eo and !:l.ER appear in 
this elementary circuit are often termed the diffusion impedances for reac­
tan ts 0 and R respectivel y. 

It follows from the last term in Eq. (6) that 

D.Ect = n2F~~Co X ir (7) 

and thus irreversibility is represented in the circuit for the faradaic impedance 
by a charge transfer resistance Rct defined by Eq. (8), where e = n2F 2fRT. 

1 1 
Rct = -­

BkfCo 
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The impedances Z 0 and ZR are dependent on the way in which the 
reactants are transported to and from the interface and we now proceed to 
ascertain their form when only pure linear diffusion is involved. This we 
can do most readily by taking note of the fact that the linear diffusion of a 
reactant in a semi-infinite medium is the analogue of charge diffusion along 
a special type of transmission line. One of the conductors of this line has uni­
form series resistance RTL per unit length and the line has uniform shunt 
capacity CTL per unit length between the resistive conductor and a perfect 
conductor (the base of the line) running parallel to the resistive conductor. 
The line contains no inductance, is of virtually infinite length and in an 
electrical circuit it is best represented by a conductor running close to and 
parallel to a resistance. 

The equation for the linear diffusion of reactant I (I = 0, R, etc) in the 
unsteady state is 

SCI(x,t) _ D S2CI(x,t) 
St - 1 Sx2 (9) 

where D 1 is the diffusion coefficient and C1(x,t) refers to the plane x. The 
analogaus equation for charge diffusion along the transmission line TL is 

S V(x,t) _ 1 82 V(x,t) 
St - RTLc:;;.. Sx2 

(10) 

and it is not difficult to show that if 

CTL(I) = 6JC1 (farad cm-1) (11) 
and 

1 
RTL(I) = --- ( ohm cm) 

6JC1D1 
(12) 

the voltage developed between the input terminals of the line will equal 
jLlE1j and any change in the voltage across the line (referred to the steady 
state value) at distance x from the input terminals will numerically equal 
RTfnFC1 times the change in the concentration of the reactant at a plane 
distance x from the electrode surface. The voltage across the line is thus 
simply related to the concentration at the corresponding plane in the 
electrochemical diffusion system. 

Strictly in the initial equilibrium state the line voltage will be finite if 
the diffusion of reactant I is to be represented by the diffusion of electrical 
charge along a line. However, we are most interested in changes of con­
centration and the line can be regarded as uncharged when the system is at 
equilibrium. Thus we see that the unknown impedances Z 0 and ZR in 
Figure 2(a) are transmission lines of virtually infinite length. Provided that 
the frequency is not so large as to render our assumption of pure linear 
diffusion invalid (in reality charge transfer seldom can be strictly assumed 
to take place with equal probability at all points on the electrode surface 
and at very high frequencies hemispherical diffusion centred on species 
adsorbed at the interface may become important) the complete aperiodic 
circuit for the faradaic impedance is the one in Figure 2( b) where the lines 
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TL(O) and TL(R) are defined by Eqs. (11) and (12). TL(R) is inverted in 
order that the line voltage (the voltage with respect to the base of the line) 
shall be of the same sign as the change in the concentration of R at the 
corresponding plane. The overpotential is thus developed between the bases 
of the two lines. I t should be mentioned that the charge stored in any short 
length ofline is equal to nF times the change in the amount ofthe reactant in 
question in the corresponding region of the electrochemical system. 

This aperiodic circuit is valid however D.E may change with time provided 
the deviation of the potential from the equilibrium ( or mean) value is small. 
When the potential varies sinusoidally it follows from standard transmission 
line theory that the input impedance of a line associated with linear diffusion 
is a t angular freq uency w 

ZTL(I) = [RTL(I)Jj wCTL(I)p where I = O,R 

= [RTL(I)/2wCTL(I)Ji (1 + (1/j)] (13) 

Thus, as indicated in Figure 2(c), in the periodic circuit for the faradaic 
impedance each line can be replaced by a capacity and a resistance connected 
in series, and, after combining the new resistances and capacities, the periodic 
circuit consists of the charge transfer resistance Rct in series with a capacity 
and a resistance. The latter two components together exhibit a phase angle 
of 45° and are sometimes termed the Warburg impedance or the diffusion 
impedance of the system. 

An explicit expression for the faradaic impedance at angular frequency w 
readily follows from equations already given and is identical with that 
obtained by more conventional methods. Clearly the approach to the faradaic 
impedance just outlined offers no substantial advantages over normal ana­
lytical methods in the case of a simple reaction. It is with more complex 
systems that the real benefits of the present approach arefeit and, although 
it is not our intention to consider systems of outstanding complexity, it is 
desirable perhaps to illustrate this point by considering briefl.y the infl.uence 
of several complications on the circuit for the faradaic impedance before 
turning to the effects of reactant adsorption. 

COUPLED CHEMICAL REACTIONS AND PARALLEL 
CHARGE TRANSFER REACTIONS 

We have seen that the linear diffusion of a reactant is represented in the 
aperiodic circuit for the faradaic impedance by a simple transmission line. 
Let us now suppose that reactant 0 exists in solution in two forms 0 and Üp, 

the latter reactant being the precursor of 0. For the homogeneous chemical 
reaction we write simply 

(d) 

At first it will be supposed that the interconversion of 0 and Op proceeds 
very slowly in the solution but that both entities are readily reduced at the 
interface forming R, so that initially the system is at equilibrium, the 
equilibrium being established by way of the charge transfer reaction-;. 
This more complex system can be treated in exactly the same way as the 
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simple system just considered and one then finds that the aperiodic circuit 
contains all the components of the previous circuit andin addition two new 
components. One of these is a transmission lihe TL(Op) defined by Eqs. 
( 11) and ( 12), the base of which is connected to the base of TL ( 0) ( see 
Figure 3). The other is a second charge transfer resistance Rctop defined by an 
equation analogous to (8). This resistance not unexpectedly links the resistive 
conductor of the new line TL(Op) with the resistive conductor of TL(R). 

TL (R) 

(a) 

1 
Rct = Kr Cre (I= O.Op, R) 

(b) TL (R) 

Figure 3. Coupled chemical reaction, parallel charge transfer reactions: (a) general circuit; 
(b) circuit when Co< Cop 

I t is thus easy to make allowance for two parallel charge transfer reactions 
involving the same number of electrons and leading to the formation of a 
common reactant. Additional parallel reactions of the same type would 
merely require the introduction of further lines and further charge transfer 
resistances. I t is invariably a simple matter in such cases to derive an ex­
pression for the impedance when the variation of potential with time is 
sinusoidal. 

The next step is to "unfreeze" the homogeneaus chemical reaction and 
allow the conversion of 0 into Op and the reverse process to take place in 
the solution near the electrode. For a small disturbance of the equilibrium 
we find that at plane x the net rate of conversion of Op into 0 is Copkd 
[ßCop(x)/Cop - ßCo(x)/Co] where ßCop(x) and ßCo(x) are the deviations 
of the concentrations of reactants Op and 0 at plane x from the equilibrium 
values Cop and Co. Now ACop(x)/Cop = Vop nFjRT and ßC0 (x)/C0 = Vo 
nFJR T where Vop and Vo are the line voltages at distance x from the input 
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terminals. It readily follows that the homogeneous reaction can be allowed 
for exactly (small deviation of E from the equilibrium value) by uniform 
resistance linking the resistive conductors of TL(Op) and TL(O) where 
the linking resistance per unit length is defined by 

1 
Rs = -~- (14) 

BkdCop 

The final circuit for this system is thus the one shown inFigure 3(a). It is quite 
complex and it is not always easy, ifthe contributions ofTL(Op) and TL(O) 
to the impedance are of comparable magnitude, to proceed further to the 
derivation of an explicit expression for the periodic impedance, (unless R8 is 
relatively large). However, if Co is considerably smaller than Cop, a case 
which is occasionally encountered with solutions containing complexing 
ions, the circuit reduces to the approximate circuit in Figure 3(b). In this 
"kinetic" case the interconversion of 0 and Op is confined to a thin reaction 
layer near the electrode and if the input impedance of TL(O) is large 
compared with the resistance Rhom in this approximate circuit, the latter 
circuit describes fairly weil the behaviour of the system. The resistance 
Rhom is evaluated by treating the resistive conductor of TL(Op) as a perfect 
conductor and then transmission line theory indicates that the resistive 
conductor of TL(O) and the distributed resistance linking this conductor 
with TL(Op) can be replaced by the resistor Rhom where 

Rhom ~ [RTL(o)RsP = B-1[DoCokctCop] -?. (15) 

Systems with coupled chemical reactions are invariably the most difficult 
to handle whatever approach may be employed but there is still something 
to be gained by considering first the form of the aperiodic circuit as it 
indicates immediately those parts of the diffusion problern that can only 
be solved by conventional analytical methods. In the case of the system 
just considered we see for example that if Rctop can be ignored a conventional 
approach is only needed to obtain a two terminal circuit equivalent to that 
part of the aperiodic circuit representing the linear diffusion of Op and 0 
and the chemical reaction. In this case use can- be made of results given by 
Gerischer5 and an explicit expression for the faradaic impedance at angular 
frequency w readily follows (taking account possibly of other complications 
considered later such as reactant adsorption at the interface). 

CONSECUTIVE CHARGE TRANSFER REACTIONS 
Consecutive charge transfer reactions by way of contrast present few 

diffi.culties. The procedure in the case of the simple reaction scheme 

0 + e- ~ OR, OR + e- ~ R (e) 

is to assume first that the two reactions are completely independent and to 
deduce aperiodic ci!cuits for the two faradaic impedances. It is found that 
the circuits have a common component TL(OR) and thus it is tobe expected 
that the circuit when the reactions are coupled will be obtained by "fusing" 
the two circuits at the common component TL(OR). The resulting circuit 
is shown in Figure 4(a). It contains a new circuit component, an ideal 
transformer, to allow for the simultaneous effect of the overpotential on 
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TL {R) 

(a) ] TL (OR) 

TL {0) 

{b) Ji 2 E:::: 
TL (0) 

Rct \!8 (RctloR,O + {RctloR,R 

Figure 4. Coupled charge transfer reactions, O+e-~OR, OR+e-~R: (a) generalform of 
circuit; (b) circuit for Co&~Co, Co&~CR when Rct issmall 

both charge transfer reactions. In this case, where each reaction involves 
only one electron, the transformer ratio for each half of the secondary 
winding is unity. If the reactant OR is a minor constituent of the system 
TL(OR) often can be disregarded and the circuit reduces to the one shown 
in Figure 4( b). This circuit has essentially the same form as that for the 
single reaction 0 + ne ~ R but the charge transfer resistance is now 
-differently defined and may vary in a rather different way with the equi­
librium potential. The transmission lines and charge transfer resistances in 
the circuits shown inFigure 4 are ofcourse defined by Eqs. (8), (11) and (12). 

ADSORPTION OF REACTANTS 

Turning now to the influence of specific adsorption of one or both reactants 
it is first necessary to recall that iflinear diffusion of a reactant is represented 
in an equivalent circuit by a resistive transmission line, the charge stored 
in any portion of the line is usually numerically equal to the electrical 
charge required to produce electrochemically the excess or deficit of the 
reactant in the corresponding part of the electrochemical diffusion system 
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when the system is not at equilibrium t. Also, that CTL(I) the shunt capacity 
per unit length equals fJC1, where C1 is the reactant concentration at equi­
librium. So far we have been considering systems in which the concentration 
throughout a phase is uniform when the system .is in equilibrium. This is 
not always the case. For instance, if a diffuse double layer is introduced 
into the picture it may be supposed that at equilibrium the reactant concen­
tration is Cr*exp (zif;F/IJ-T) where tP is the potential with respect to the bulk 
of the phase, z is the number of electronic charges carried by the reactant 
and C1* is the concentration at a plane sufficiently far from the interface 
for if; to vanish. In this case ifwe look more deeply into the diffusion problem, 
we find that the earlier expression for CTL still holds but C1 must now be 
identified with the equilibrium concentration at the plane in question. Thus 
when the diffuse double layer cannot be ignored the capacity per unit length 
may increase or decrease progressively as the input terminals are approached 
depending on whether the reactant is attracted to or repelled from the 
interface. A small positive surface excess associated with non-specific 
adsorption thus should strictly be allowed for by introducing additional 
distributed shunt capacity in the part of the line representing the diffuse 
double layer. The diffuse double layer also affects the series resistance of the 
line but this point will not be discussed. 

The line capacity for a given charge transfer reaction thus is determined 
by the amount of the reactant present in the corresponding region of the 
electrochemical system when the system is at equilibrium ( or in a pseudo 
equilibrium state). If in any region the apparent activity coefficient of the 
reactant changes there must invariably be a change in shunt capacity in 
the corresponding part of the transmission line. Thus in a hypothetical case 
in which the equilibrium concentration is enhanced in the region between 
the planes x1 and x2 ( due perhaps to a film of ion exchange resin), as 
indicated in Figure 5(b) additional shunt capacity would be added to the 
transmission line from a point distance x1 to one distance x2 from the input 
terminals. 

It is clear that a surface excess (positive or negative) of a reactant produced 
by non-specific or specific adsorption must be represented in the equivalent 
circuit (Figure 5c) by what will be termed an adsorption capacity C(I) 
defined by 

C(I) = er1 (16 

where Fr is the surface excess. If the adsorption is non-specific this additional 
positive or negative capacity should strictly be distributed over the part of 
the line representing the diffuse double layer but as the thickness ofthe layer 
is so small no significant error is introduced by connecting the adsorption 
capacity between the input terminals of the line. It should be noted that the 
charge stored in the adsorption capacity is equal to nFßTI where fl.Fr is the 
change in the surface excess in the non-equilibrium statet. 

If there is positive adsorption of a reactant, it is evident that it will be more 
difficult to change the concentration of this reactant near the electrode 
surface. In other words the apparent diffusion impedance for the reactant is 
lowered and this is allowed for in the aperiodic circuit by shunting the usual 

t This may not be true if the circuit contains a transformer. 
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(a) 

TL(!) 

(b) 

(c) 

Rii) 

TL(!) 

Fzgure 5. Influence ofreactant concentration on the diffusion impedance: (a) circuit for linear 
diffusion of I; (b) uncven reactant concentration in solution; (c) adsorption of reactant I 

at interface. 

linear diffusion transmtsston line with an adsorption capacity. It is not 
difficult to show that the behaviour of the resulting circuit, when the 
adsorption coefficient is considerably smaller than the thickness of the region 
in which the reactant concentration is disturbed, is virtually the same as 
that when the adsorption capacity is replaced by a negative resistance R(I) 
connected in series with the line, (Figure 5c) if 

R(I) - yrRTL(I) 

(17) 

This simple circuit transformation often is of value when charge transfer 
irreversibility is combined with specific adsorption. 

So far our treatment of specific adsorption has been inexact in that account 
has only been taken of the dependence of the surface excess on C 1, the 
reactant concentration at the interface. No allowance has been made for the 
finite value of (dyr/dE)cr This defect, although seldom a particularly 
serious one, will be remedied in the following section. 
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EQUIV ALENT CIRCUIT FOR THE INTERFACIAL IMPEDANCE 
We are now in a position to construct an aperiodic equivalent circuit for 

the entire interfacial impedance and in the case of the three step reaction 
mentioned earlier it takes the form shown in Figure 6. The faradaic part of 
the impedance comprises the two transmission lines TL(O) and TL(R) 

. Non -faradaic Faradaic 

i(R)t C(R) 
TL(R) 

,..... V(R) 

Cdt 
1(0) J{R) 

! ! it Rct 

i(oJ~ 

Figure 6. Aperiodic equivalent circuit for the interface when reactants 0 and Rare strongly 
adsorbed but r o and TR are small 

[defined by Eqs. (11) and (12)] which are shunted by adsorption capacities 
C(O) and C(R) defined by Eq. (16) and linked by acharge transfer resistance 
Rct defined by Eq. (8). Ifit is supposed that (dyr/dE)c1 = 0 for both react­
ants then the charge transfer numbers a and b für the two adsorption steps 
[reactions (b) and (c)] both equal zero and the circuit is completed by 
connecting the differential capacity Cd1 across the faradaic part of the 
impedance. As indicated earlier cdl = (dq/dE)ro, rR' 

However, more generally (dyr/dE)c1 is finite and allowance should bemade 
for (a) the direct effect of potential on the surface excesses, and (b) non­
faradaic current connected with the adsorption steps as the charge transfer 
numbers a and b are now finite in value. Considering first the changes in 
the faradaic part of the impedance, we have earlier noted that the charge 
stored in an adsorption capacity equals nF times the change in the surface 
excess. This is a strict equality which must always be satisfied whatever the 
cause of the change in the surface excess. If the adsorption coefficient is 
potential dependent it can be satisfied by inserting in series with the adsorp­
tion capacity a valtage generator which supplies a small (positive or negative) 
fraction ofthe total overpotential !J.E. Thus two valtage generators V(O) and 
V(R) have to be inserted in the faradaic part of the circuit in the positions 
indicated in Figure 6, and it is readily found that 
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V(I) = _ RT (d lnyr) 
nF dE CrD.E 

(18) 

where V(I) is the voltage with respect to the generator terminal closest 
to the base of the associated line. What we term the "faradaic'' part of the 
circuit is now complete. 

The "non-faradaic" part of the circuit must satisfy equation (3) and the 
charge transfer numbers connected with the two adsorption steps have tobe 
more precisely defined. Making the assumptions mentioned earlier and 
assuming also that the adsorption coefficients for the reactants greatly exceed 
the integral adsorption coefficients (FxfCx).for ions of the supporting electro­
lyte, it follows from the Gibbs adsorptionisotherm that q, the charge density 
on the mercury surface is given by 

_, RT (dro) q = qse + dE Co (19) 

ifthe system contains only reactant 0. In this equation q8e is the corresponding 
charge density when component 0 is absent. As the adsorption coefficient is 
supposed to be a constant at constant potential, Eq. (19) can be written in 
the form 

(
d lnyo) 

q ~ qse + RTFo -dE- Co 

Hence 

(~) ~ RT (d lnyo) 
dro E- dE Co 

(20) 

As low surface coverage is assumed for both adsorbed 0 and adsorbed R 
we expect Eq. (20) tobe valid when the system contains Rand the electrode 
reaction takes place at the interface. Thus the fractional charge transfer 
number appearing in adsorption reaction ( b) is defined by 

a ~ _ l}T (d lnyo) 
- F dE Co 

(21) 

and with a change of sign b is given by an analogous equation. These results 
we can check by treating each adsorption step as a real charge transfer 
reaction involving a fractional number of electrons. For example, writing 

E ~ Eo + R T ln Co 
- aF To 

(22) 

where Eo is a type of standard potential and differentiating with respect to 
potential holding Co constant, Eq. (21) is again obtained. 

As the transfer of molecules of 0 from the solution to the interface in­
volves .the supply of electrons to the electrode and the rate of transfer is 
linked to the current flowing into the adsorption capacity C(O), it is evident 
that the non-faradaic current associated with changes in F0 with time can 
be accurately represented in the equivalent circuit by an infinite impedance 
current generator I(O) connected across the faradaic part of the circuit. 
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The dependence of q on rR is likewise represented by a current generator 
I(R), and the differential capacity Cctl takes account of changes in q due 
solely to changes in q8e with potential. The currents supplied by I(O) and 
I(R) areproportional at all times to the currents i(O) and i(R), respectively, 
flowing through C(O) and C(R) and in Figure 6 the directions of linked 
currents are indicated by arrows. The following equation relates I(I) with 
i(I) t 

J(I) = RT (dlntr) X i(I) 
nF dE Cr 

(23) 

Apart from the inclusion of the two voltage generators the final circuit is 
identical with one advanced some years agol2, 10. The latter circuit is often 
sufficiently accurate since adsorption coefficients frequently vary quite 
slowly with potential and hence, without incurring serious errors, the 
voltage and the current generators in the circuit in Figure 6 often can be 
ignored. 

The system just considered with simultaneaus adsorption of both reactan ts 
has recently been studied theoretically by Delahay and Susbielles13. The basic 
assumptions made by these workers resemble those made here although 
their treatment follows conventional lines and Ieads to rather complex 
expressions for the resistive and reactive parts of the impedance at angular 
frequency w. Some measure of agreement between their findings and con­
clusions to be drawn from the circuit in Figure 6 would be expected. In fact 
it can be shown that if in the treatment ofthese workers the variations of the 
surface excesses and q are more rigorously allowed for the two approaches 
Iead to identical results at least when the surface excesses are small but 
Yo and YR are large. 

INFLUENCE OF REACTANT ADSORPTION ON THE 
ELECTROCAPILLAR Y CURVE 

Strong adsorption of one or both reactants tends to lower the surface 
tension of the mercury surface andin the vicinity of the half-wave potential 
a break in the curve may be observed duetochangingreactantconcentrations 
at the interface. Figure 7 shows schematically the variation of the surface 
tension a with potential, and also the variations of ( da/dE):Ecnt and 
( d2ajdE2) r::cn!, in a case in which reactant R is not adsorbed. To simplify 
the discussion it is assumed that the adsorption of 0 is not directly potential 
dependent, i.e. ( dTofdE)Co = 0. At potentials appreciably more positive 
than the half-wave potentialE!, the surface tension is uniformly lowered. At 
potentials more negative than E!, the surface tension curve coincides with 
that for the base solution. The derivative of a with respect to potential passes 
through zero three times and it might be supposed, by analogy with the 
perfectly polarizable electrode, that at three different potentials the double 
layer charge density is zero. Such, however, is not the case. The quantity 

t If yo and /'Rare small, Eq. (23) must be replaced by 

/(I) = _!_ ( ~-) X i(l) 
nF dT1 E 
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O+ne-~R, rR=O, (dr0 /dE)c =0 
I o 

b 

I~ 
0 
~ 

~~~ "'0"'0 ..._ 
I 

Base solution 1 

+ 

+ 

0 + 

I ,, 
\ 

Base solution ' 
+ o I ' 

I ' 
II f', . 
c.t.r: frozen 

I 
I 

Base solution 

Figure 7. Influence of the adsorption of reactant 0 on the surface tension ( a), 

-(~)1:CvD and -(:~~)1:CvD(ECy'D = CRDt + C0 Dlt) 

( dufdEh;cnl must be regarded only as an apparent double layer charge 
density, as it may include charge components connected with the reduction 
of 0 when R is adsorbed, and with the oxidation of R when 0 is adsorbed. 
The latter component is responsible for the hump seen on the ( du/dE):Ecnl 
curve in Figure 7. At the half wave potential the apparent charge density 
greatly exceeds the corresponding charge density for the base solution. 
At this potential Co is half the value at much more positive potentials and 
the real double layer charge density is the same as that for a solution 
containing halfas much component 0 (we assume here that yo is a constant) 
when, by unspecifi.ed means, the electrode reaction is "frozen". Also, as 
we assumed earlier that (dTofd.E)c0 = 0, the real double layer charge 
density is at all potentials close to that for the base solution. Of the 
three potentials at which ( dujdE)1:cn! = 0, only the most positive of the 
three really represents a point of zero charge. 
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SPECIFIC ADSORPTION OF REACTANT­
NO ELECTRODE REACTION 

If the circuit in Figure 6 is correct it should be possible to derive from it 
an equivalent circuit for the system when the electrode reaction does not 
take place but one ofthe reactants is present and is adsorbed at the interface. 
In this case Rct is infinite and as only one of the two reactants is now present 
one of the transmission lines, the associated adsorption capacity and the 
associated current generator are removed from the circuit. We are left with 
the differential capacity Cdh a current generator /(I), an adsorption capacity 
C(I), a voltage generator V(I) and the transmission line TL(I) where I 
may be 0 or R. The remnants of the original circuit present a peculiar 
appearance and although current flows through C(I) and TL(I) in the 
non-steady state this current does not flow in the external circuit. The only 
observed current is that supplied by the current generator J(I) which is, 
of course,-linked to the current passing through C(I). As V(I) is related to 
!}.E by Eq. (18) and /(I) is similarly related to i(I) by Eq. (23) it is not 
difficult to see that the remains of the original circuit are equivalent to the 
circuit shown in Figure B(a) where 

C'(I) = ZTL<_!l_ = [RT(d lnyi) ] 2 

C(I) ZTL
1 
(I) nF dE CI 

(24) 

and ZTL = (RTL/CTL w) ~. The final circuit is exactly that predicted by an 
earlier treatment of specific adsorption of a minor constituent14. 

Such adsorption, from a thermodynamic viewpoint, can be treated as a 
charge transfer reaction involving the transfer of - RTjF(d lnyi/dE)c1 
electrons to component I when it enters the interfacial region. Thus it should 
be possible to derive the circuit in Figure 7(a) by regarding the interfacial 
impedance as having a non-faradaic part (Cctl) shunted by the faradaic 
impedance for this hypothetical charge transfer reaction. We may assume 
that the reaction Ieads to the formation of an entity P which is present at 
vanishingly small concentration in both phases but which is strongly 
adsorbed at the interface. Thus the faradaic part of the circuit (Figure Bh) 
consists of a transmission line TL(I) in series with an adsorption capacity 
C(I 0

). These components are defined by Eqs. (11), (12) and (16) and after 
sufistituting the value -RT/F(d ln YI 0 /dE)c1 for n it is found that in all 
respects the circuit is identical with the one in Figure B(a). These tests 
confirm the accuracy of the present approach to the interfacial impedance 
and the latter test demonstrates clearly the difficulty of distinguishing 
experimentally between charge transfer to the interface as a whole and 
charge transfer to a particular component of the interface. 

METAL ION-AMALGAM REACTIONS 
The circuit of Figure 6 refers to an assumed model involving three distinct 

steps and it is pertinent to enquire to what systems may it be applied. I t may 
be expected tobe valid whenever one or both reactants are adsorbed in well 
defined forms at the interface. Thus one would expect it to describe well the 
impedance when 0 and Rare organic species differing somewhat in structure 
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{a) 

(b) 

o--r........__ ___ ----,1 c1 (I) 

Cctt ~ 

I TL1 (I) 

o~---4-----------------------------·~ 

Cctl = (dq) 
dE Fr 

-----· 0-----11.....-----~+- C ( IOJ 

-~ ',,"·" ... ,,, 'l't'./•-t"l'l'.l'l'l'·l·-· 
TL {!0) 

Cctt 

o~--I ________ TL_(_l) ____ --.. 

Figure 8. Circuit for the interfacial impedance when component I is adsorbed: (a) circuit 
derived from the circuit in Figure 6; (b) circuit when the adsorption process is treated as a 

charge transfer reaction, I+ae-~!0 (ads) 

or when 0 is a metal ion which is strongly adsorbed at the interface in the form 
of a complex ion or an UJ?.dissociated molecule. It is possible, however, that 
for some metal ion-amalgam reactions the model should be somewhat 
more diffuse than this three step model. One might envisage adsorption in 
a variety of forms resulting in an average value for the apparent charge 
of an adsorbed metal ion less than its normal value and it is of academic 
interest to consider the form of the equivalent circuit when, following 
Lorenzll, the overall reaction is regarded as involving an infinite number of 
minute charge transfer steps. First, however, we consider the impedance 
for the two step seq uence 

0 + n1 e- ~ OR, 

If the earlier treatment of coupled charge transfer reactions is slightly 
extended it is found that the equivalent circuit for the faradaic impedance 
has the form shown in Figure 9(a). The transformer in this case is an auto­
transformer so tapped that the voltage developed between the bases ofTL(R) 
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and TL(OR) equals n1/n times llE and this transformer takes account of the 
fact that both reactions are simultaneously affected by the overpotential. 
Now we may assume that the entity OR is present only at the interface. Then 
the line TL(OR) is replaced by an adsorption capacity C(OR) and we now 

(a) 

(b) 

(c) 

Rcto;oR 

n2F2 e=­
RT 

C (OR) = ; 2
(

2 r {OR) 

TL(R) CO 

TL (OR) 00 

CO 

Figure 9. Circuits for metal ion-amalgam reactions: (a) two step charge transfer reaction; 
(b) circuit when the intermediate OR is only present at the interface; (c) circuit (schematic) 

for multi-step ion transfer. 

have a circuit (Figure 9b) which not only takes account of the faradaic 
current but also non-faradaic current connected with the dependence of the 
double layer charge density Oll r OR· The circuit for the entire interfacial im­
pedance would be complete if we connected between the termirrals of the 
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transformer the differential capacity Cctl (for constant roR). The circmt m 
Figure 6 can also be arranged in a similar wayt. By introducing an auto­
transformer and connecting the adsorption capacities C(O) and C(R) to 
tappings on this transformer it is possible to eliminate voltäge and current 
generators from the circuit, a change which some workers may welcome. 

The circuit in Figure 9(b) shows how difficult it is to justify a division of 
the current into non-faradaic and faradaic parts as some of the "faradaic" 
current flowing through RctoRiR may flow through C(OR) and appear 
after transformation in the auto-transformer as- a "non-faradaic" current 
passing between the input terminals of the transformer. Similar considera­
tions apply to current flowing through Rctol OR· One further point should 
be mentioned. lf the first step in this reaction sequence was in reality an 
adsorption step and n1 was negative in sign, the lower part of the autotrans­
former in Figure 9(b) would be extended downwards and C(OR) would 
be connected to a point below the lower _of the two transformer terminals. 
Likewise, if n1 were to be larger than n, the adsorption capacity would be 
connected to a tapping above the upper ofthe two terminals. 

From this discussion it readily follows that the equivalent circuit for a 
multi-step charge transfer process when a metal ion moves from a solution 
to the mercury phase takes the form shown in Figure 9(c) (Cctl has been 
again omitted for simplicity). The various capacities are related to the surface 
excesses ofthe ion at different planes in the interface and the various tappings 
on the transformer supply appropriate fractions of the overpotential at 
different planes. The resistance Rn replaces the charge transfer resistance 
or resistances of less general circuits and is to be regarded as a diffusion 
resistance connected with the diffusion of the ion in the interfacial region. 
No Ionger is it possible to clearly distinguish it from diffusion resistance in 
the region of the diffuse double layer or even from diffusion resistance (RTL) 
in the bulk of the phases. 

CONCLUSIONS 
Thus we see that in principle it is not difficult to develop accurate equiva­

lent electrical circuits for the interface when an electrode reaction takes 
place provided all chemical or electrochemical reactions are first order or 
pseudo first order reactions. Linear diffusion of reactants. invariably is 
represented in the circuit by simple resistive transmission lines. Homo­
geneous chemical reactions Iead to the presence of distributed resistance 
linking these lines and coupled charge transfer reactions can be allowed 
for with the aid of a transformer. Specific or non-specific adsorption of 
reactants can be allowed for with fair accuracy by additional capacities 
shunting the input terminals of the transmission lines. Strictly, however, 
voltage generators and current generators should also be introduced to 
allow for the direct dependence of the surface excesses on potential. Alterna..;. 
tively accurate allowance can be made for reactant adsorption by combining 
an autotransformer with one or more adsorption capacities and with lines 
associated solely with mass transport. It is also possible to construct an 

t This change is permissible as the coefficients of tl.E and i(I) in Eqs. (18) and (23) are 
identical. 
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equivalent circuit for the interfacial impedance when charge transfer is 
regarded as a multi-step process. 

The aperiodic circuit may be quite complex in practice if several compli­
cations occur simultaneously. However it often happens that the circuit 
reduces to one of the forms shown in Figure 10. Thus the circuits in Figures 
2(b), 3(b) and 4(b) after combining the transmission lines take the form o 
the one in Figure JO(a) and as the faradaic part of this circuit is the electrica 

(a) 

Cctt I 0 

0 

I~ . 
{b) 

I~ cdl 

0 

(c) 

0.--------41-----.....1 
(d) :"I ~ 

Figure 10. Basic forms of the equivalent circuit for the interfacial impedance. 

analogue of heat conduction in a semi-infinite medium with radiation at the 
place x = 0 it is possible, using known solutions of this problem, to write 
down immediately an· expression for the faradaic current if the potential 
Variation with time is sinusoidal, or if it can be broken up into potential 
steps appropriately spaced in time. If slight specific adsorption of reactants 
is combined with charge transfer irreversibility, the circuits may again 
reduce to the one in Figure JO(a). Ifstrong adsorption is combined with slight 
irreversibility and the circuit may be approximately identified with that in 
Figure JO(b), it can be rearranged in the form shown in Figure JO(c), and 
expressions for the currents flowing through the various vertical limbs of 
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this circuit are usually not difficult to obtain.The combination of Rct and 
a transmission line is the analogue of the heat conduction problern mentioned 
above. The combination of C1 and a resistance presents no problern and the 
series combination of C2 and a transmission line is the electrical analogue of 
heat conduction in a semi-infinite medium in contact with a well-stirred 
liquid at the plane x = 0, a diffusion problern solutions of which are 
known for various boundary conditions. These solutions also are of value 
when the circuit for the interfacial impedance takes the form in Figure JO(d) 
and, if the potential variation with time can be broken up into potential 
steps, an expression for the interfacial current is obtained almost immediately. 
There are, however, situations where the aperiodic circuit may be of little 
help in deriving an expression for the cell current, but it often is then the 
case that the system contains many unknown parameters and that an 
expression for the current is of limited practical value. Whatever methods 
may have tobe used in the development of the theory of a.c. polarography 
and low Ievel relaxation techniques, there clearly is always something to be 
gained by first considering the structure of the equivalent circuit for the 
interface. 

The author is indebted to Professor Paul Delahay for a pre-publication copy of a 
paper (with G. Susbielles) on the theory of the double layer impedance. 
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