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Nach einer Einleitung in die Rolle der Energiefunktionen (Energiehyper­
flächen) E in Spektroskopie und Theoretischer Chemie, wird ein Ansatz 
angegeben und diskutiert, der eine näherungsweise Darstellung € von Ener­
giefunktionen mehratomiger Systeme ermöglicht und noch freie Parameter 
enthält. Diese können durch Forderungen an E berechnet werden, wobei 
sich nur lineare Gleichungen ergeben. 

Auf diese Weise können alle von Seiten der Theorie und der Empirie zu 
stellenden Forderungen an € erfüllt werden. Das Verfahren, welches 
teilweise ein Interpolations- oder Extrapolationsverfahren der Energiehyper­
flächen darstellt, wird an einigen Beispielen erläutert. Die Untersuchungen 
sind noch irn Gange. 

Der Zusammenhang zu den Absolutrechnungen wird aufgezeigt. 

EINLEITUNG 

Kaum ein anderer Begriff ist in der theoretischen Molekülspektroskopie 
so fundamental, wie der der Energiehyperflache oder der Energiekurve. Er 
beruht in seiner Begründung auf dem Näherungsstandpunkt, dass die 
Atomkernbewegungen wesentlich langsamer verlaufen, als die Bewegungen 
der Elektronen. Aus diesem Grunde kann in sehr guter Näherung für 
jeden Elektronenzustand (k) eine !\1olekülenergie Ek als Funktion der 
Kernlagen R im Raum eingeführt werden: 

(l) 

Der Vektor R steht für die Gesamtheit aller F unabhängigen Kernkoordi­
naten R1,R2, •• • ,RF: 

( la) 

Bei N Atomkernen beträgt F = 3N- 6, wenn alle Kerne frei beweglich 
sind. F werkleinert sich, wenn die Bewegungen der Atomzenten einge­
schränkt werden. Liegen alle N Kerne auf einer Geraden, so ist F = N - 1. 
Jenachdem ob F = 1, F = 2 oder F > 2 ist, sprechen wir oft von Energie­
kurven, Energieflächen oder Energiehyperflächen, auch der Ausdruck 
Potentialkurve oder -fläche ist üblich. 

Wellenmechanisch ergeben sich die Energiefunktionen aus der zeitunab-
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hängigen Schrödinger-Gleichung des jeweils vorliegenden Elektronensystems 

(2) 

wobei H der H~miltonoperator bedeutet und Ek der dazugehörige Molekül­
Energieeigenwert ist, der sich in dieser Form vorerst formal als Funktion 
aller 3N Kernkoordinaten ergeben kann R' = {R1,R2, •• • ,RN}. Danach 
kann dann zu den F unabhängigen Koordinaten übergegangen werden. 
Entsprechendes gilt auch für ljl( w,a,R '). w und a stellen die Gesamtheiten 
der elektronischen Orts- und Spinkoordinaten dar. 

Aus (2) lässt sich exakt zeigen, dass sich €
1 in der Form 

€
1 = E' (R') + W(R') = E(R) + W(R') (3) 

ergibt, in welcher E'(E) die reine Elektronenenergie und W die Kernab­
stossungsenergie darstellt: 

N-1 N 

W(R') ~ ~ Z;.ZJl. 
= L. L R;. 

A=l p.=A+l f.l 

(3a) 

wobei R;. 11 der Abstand zwischen .\-ten und ~t-ten Kern bedeutet, die beide 
jeweils die Kernladungen Z;. und Z 11 tragen (Z;.; ,\ = I, ... , N). Die oben 
erwähnte Näherung erlaubt nun die verschiedenen (j) Energiezustände E- kf 
des Atomkernsystems aus einer Wellengleichung von der Form: 

(4) 

zu berechnen, in welcher K. der Operator der kinetischen Energie der Kerne 
darstellt. XkJ(R') ist dann die Wellenfunktion der N Kerne und gehört 
zum j-ten Energiezustand mit der Energie Ekj, wenn dieser auf der k-ten 
Energiehyperfläche Ek vorliegt. In x kann von R' nach R übergegangen 
werden, wenn, wie bei Ek, die Bewegungen der Gesamttranslation und der 
Gesamtrotation abgespalten werden. Die Koordinaten der Kernspins sind 
in (4) nicht berücksichtigt worden. Mit Hilfe von E(bz;w. €

1
) und ,P in (2) 

lassen sich alle Aussagen über molekulare Elektronenspektren gewinnen, 
wobei (2) nur näherungsweise gelöst werden kann. Aus (4) ergeben sich 
dann, bei bekanntem e(bzw. E'), die Informationen über die Spektren, die 
aus den Kernsystemzuständen folgen! Wir sehen dabei noch einmal die 
fundamentale Rolle von E(bzw. e'). Da Win (3) injedem Falle bekannt ist, 
geht die Frage nach E, einer Funktion, die im ganzen R-Raum (bzw. 
R'-Raum) endlich bleibt, im Gegensatz zu e. 

APPROXIMATIVE ENERGIE (POTENTIAL-)FUNKTIONEN 

Die Behandlung von (2) stösst auch heute noch, trotz einer Reihe in 
letzter Zeit gemachter Fortschritte auf grosse Schwierigkeiten. Ihre 
Beseitigung ist Aufgabe der Quantenchemie. Die hier aufgeworfenen Fragen 
sind auch deshalb schon von grosser Bedeutung, da die.Kenntnis der Energie­
hyperflächen auch in der Theorie der Reaktionen notwendig ist. Aus allen 
diesen Gründen ist schon seit längerer Zeit ein halbtheoretischer Weg 
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eingeschlagen worden, der allerdings bisher nur für F = 1 zum Erfolg 
geführt hat. Man wählt eine analytische Näherung € für E": 

wobei E. noch eine Reihe von freien Parametern cxt(i = 1,2 •.. ) enthält 

i = E.(R1,R2, ••• Rp; cx1,cx2 •• ) 

(5) 

(Sa) 

die entweder an empirischen oder theoretisch bestimmten Grössen justiert 
werden. Mit diesen approximativen € bzw. €' wird dann in ( 4) eingegangen 
und versucht, die Energiezustände des Kerngerüstes zu berechnen, was in 
vielen Fällen nur näherungsweise möglich ist. 

In der Bestimmung der <Xi bestehen gewisse Freiheiten. Im allgemeinen ist 
es üblich, wenn zweiatomige Moleküle vorliegen (F = 1), die folgenden 
charakteristischen Grössen zu verwenden: 

R 0 = Bindungsabstand 

B = Bindungsenergie 

k = Kraftkonstante 

E( oo) = Molekülenergie für R ~ oo. 

Daraus folgen vier Bedingungsgleichungen an E(R): 

~~~R. = o 
E(R0) = B + E( co) 

:;;,IR. = k 

limE(R) =E(CO), 
R----+0 

aus denen sich vier CXi bestimmen lassen. 

(6) 

(6a) 

(6b) 

(6c) 

(6d) 

Wir wollen nicht näher auf den Fall F = 1 eingehen, weil wir hier mehr 
den Fall F > 1 behandeln wollen, aber es seien einige für das folgende 
wichtige Zusammenfassungen über den Fall F = 1 angegeben. 

Betrachtet man die vielen Ansätze für €, wenn zwei Atome vorliegen, 
so erkennt Inan, dass fast alle nicht die Form (3) haben. In den meisten 
Fällen ist daher auch die Forderung: 

lim Ri(R) = ZaZb 
R----+0 

nicht erfüllt: die sich aus (3) ergibt, wenn nach (3a) 

ZaZb 
W=~· 

(6e) 

(3e) 

Es lassen sich aber noch weitere Forderungen an E stellen. So wissen wir, 
dass sich für kleineR die Entwicklung (Elektronenzahl fest): 

M.S.-8 

E(R) = E(O) + E 2R2 + E 3R3 + ... (R~ 1) 
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für E(R) angeben lässt, wobei E2,E3, ••• Konstanten sind und E(O) die 
Elektronenenergie des sogenannten "vereinigten Atoms" darstellt1• Für 
grosse Kernabstände hat man bisher die Entwicklung2 : 

ei e2 
E(R) = E( oo) + R + R2 + ... (R ~ 1) (8) 

angenommen. Die Werte der Konstanten e1,e2, • • • hängen vom Bindungs­
typus ab. Bei zwei gleichen Atomen ist zum Beispiel 

e1 = 0; (j =I, 2, ... 5,7,9,11, ... ) 

Neben den Grössen in (6) sind jetzt noch E(O); E1(j = 2,3, ... ) und 
ei(j = 1,2, ... ) hinzugekommen, sowie Za und Zb, die in der Forderung 
( 6e) auftreten. 

Es sollte daher möglich sein, mit Hilfe dieser Grössen zu besseren E zu 
gelangen. 

Es ist dabei zu bedenken, dass spektroskopisch zwar der Verlauf um den 
Bindungsabstand von grösster Bedeutung ist, dass aber der Verlauf für 
grosse und kleine R wichtig wird, wenn auch höhere Schwingungs- und 
Rotationszustände ausreichend genau aus ( 4) erhalten werden sollen. 
Gleichzeitig wird dadurch auch wieder die Energiekurve um R0 besser 
erfasst. 

Andererseits ist zur Berechnung von Streuvorgängen die Energiekurve für 
sehr kleineR notwendig. 

EIN NEUER ANSATZ FUR €, WENN F = (N = 2) 

Ein Ansatz für E, der alle Forderungen zu erfüllen gestattet3 , ist 

- ZaZo 
€=E+~ (9) 

mit 

(9a) 

Dieser Ansatz führt bei der Bestimmung der freien Parameter CXi und cxi auf 
lineare Gleichungen und hat die verlangte Form (3), erfüllt somit (6e). 
Die Wahl von Mist vorerst frei und richtet sich nach der Anzahl der Ford­
erungen an € und nach der gewünschten Genauigkeit, soweit diese nach­
prüfbar ist, denn zur Zeit liegen nur sehr wenige Energiekurven vor und 
auch die bisher mit hoher Genauigkeit berechneten E-Werte sind gering! 
Liegen nämlich für ein Molekül für eine Reihe von R-Werten die €-Werte 
vor, so können, neben den Forderungen (6a), (bis), (6d) sowie (7) und (8), 
auch diese Werte dazu herangezogen werden, um einige CXi und cxi zu 
bestimmen. Die so erhaltenen Bestimmungsgleichungen sind, wie man 
leicht sieht, ebenfalls linear in den cxi und cxi. 

Es sei noch der Hinweis gemacht, dass es immer noch bequemer ist, die 
Energiekurve für grosse oder kleine R-Werte näherungsweise zu berechnen, 
als mit einer Rechenmethode im ganzen R-Bereich, und dass es nach den 
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bisherigen Überlegungen genügt, diese im Mittelbereich für einige ausge­
wählte R-Werte sehr genau zu kennen, was Aufgabe der ab-initio-Rech­
nungen ist. Nach (9) (9a) kann dann mit allen zur Verfügung stehenden 
Kenntnissen eine approximative Potentialkurve erhalten werden. Wir 
sehen daraus, wie sich Absolutrechnungen und Ansätze fürdie Energiekurven 
ergänzen, damit schliesslich eine genäherte Energiefunktion erhalten wird, 
aus der sich dann mit Hilfe der Gleichung (4) alle Kernbewegungen ableiten 
lassen. 

DER ERWEITERTE ANSATZ FÜR €, WENN F > l(N > 2) 

Die gleichen Überlegungen wie im Falle F = 1 können auch hier wieder 
angewendet werden. Auch hier können einige E-Werte aus Absolutrech­
nungen mit herangezogen werden, damit die approximierte Energiehyper­
fläche erhalten werden kann. 

Die Forderungen (6a) bis (6d) haben jetzt zum Beispiel die Form 

!~.IR· = 0 (i = 1,2, ... F) 

E (R 0) = B + E ( a I b I c I . . . I N) 

(i = 1,2, ... F) 

lim E (R) = E ( a I b I c I . . . I N), 
R-HO 

woLei die Ri die freien Kernabstände bedeuten 

(lOa) 

(lOb) 

(lOc) 

(IOd) 

(11) 

Die Kraftkonstante ki ist bezüglich der Koordinate Ri definiert. 
E( a I b I c I ... IN) bedeutet die Energie der _.i\T getrennten Atome (separated 
atoms), wobei B diejenige Energie darstellt, die das System gegenüber 
E(a I b Iei ... IN) gewinnt, wenn es in die Gleichgewichtkonstellation 
(adiabatisch) übergeht. Die Bildungswärme wird aus B erhalten, wenn 
dieses durch die Energie der Nullpunktschwingungen korrigiert wird. An 
Stellevon (6e) trittjetzt: 

lin1 R;,llE(R) = Z;,Zf.l (A.,p. = 1,2, ... N). (lOe) 
Rr./l.~o 

Für N > 2 lassen sich aber noch weitere Bedingungen an E(R) finden! 
Hier hilft die Vorstellung der Atomassoziationen [K] weiter4• Für N = 2 
lassen sich zwei Atomassoziationen angeben, nämlich: 

[a I b], [ab] ( 12) 

wenn die Atome a und b vorliegen. Die dazugehörigen Energien E(K) 
nannten wir oben: 

E(al b) = E( oo) = E( oo); E(ab) = E(O). 
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Für drei Atome a, b und c lassen sich insgesamt fünf Assoziationen angeben: 

[alblc] [c I ab] 

[a I bc] [abc] ( 13) 

[b I ac] 

mit den dazugehörigen Energien des Elektronensystems (ohne Kernab-
stossung): 

E(albjc) E(cl ab) (13a) 

E(al bc) E(abc). 

E(b I ac) 

Der Übergang zu einer Assoziation wird dadurch erreicht, indem einige 
Kernabstände gegen Null, andere gegen Unendlich gehen, z.B. in (13a) 

I im E = E ( c I ab). ( 13b) 
Rab~o 
Rac~CIJ 

Allgemein schreiben wir für die Elektronenenergie: 

lim E(R) = E(K), 
[K] 

( 14) 

wenn zur Assoziation [ K] übergegangen wird. 
Damit haben \vir weitere Bedingungen an E" (bzw. E) gefunden, indem 

noch (14) erfüllt sein soll. Dabei kann im ersten Schritt auch zu sogenannten 
unvollständigen Atomassoziationen übergegangen werden, indem nur 
einige Kernabstände gegen Null gehen. Die Energie auf der rechten Seite 
von (14) stellt dann, im Gegensatz zum Übergang zur vollständigen Assozia­
tion, die Elektronenenergie eines Moleküls dar, welches niederzentriger als 
das ursprüngliche Molekül ist. Beim vollständigen Übergang resultieren die 
Energien freier Atome. 

Wir geben zur Erläuterung die Verhältnisse schematisch am H 20 wieder: 

{ 
Assoziation 

~----~----------------~ 
unvollständig 

HF (Molekül) 
HF (Molekül) 
HeO (zweie~tomiges System) 

vollständig 
[0 I Hl H] "separated atoms" 
[HIFJ 
[H I F] (15) 
[HeiOJ 
[Ne] "united atoms" 

In der Theorie der Atomassoziationen nennt man alle Atome, die in einer 
Assoziation durch Zusammenfallen von Kernladungen entstehen, Teilver­
einigungen. Zwischen Teilvereinigungen untereinander und mit Atomen 
lassen sich dann wieder Entwicklungen nach (8) angeben, die zu neuen 
Forderungen an € führen. Man macht dabei davon Gebrauch, dass sich die 
Wechselwirkungen zwischen weit entfernten Atomen nach (8) in sehr guter 
Näherung additiv aus Wechselwirkungen zwischen zwei Atomen zusam­
mensetzen. 
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Um die bei zwei Zentren durchgeführte 11ethode auf mehrzentrige Sys­
teme zu erweitern, n1uss also ein Ansatz für N > 2 gefunden werden, der 
alle genannten Bedingungen erfüllen kann. Der zuweilen verwendete Ansatz 
für N > 2, der sich additiv aus zweizentrigen Potentialkurven zusam­
mensetzt, kann nicht alle Bedingungen erfüllen. Er lässt sich bestenfalls 
für kleine Abweichungen aus den Gleichgewichtslagen verwenden, wenn die 
Wechselwirkungen zwischen den Bindungen klein sind. Die Forderungen 
(14) können auf diese Weise nicht erfüllt werden. Ebenso treten bei den 
Bedingungen (lüa) und (lüc) SchV\ierigkeiten auf, da man nicht weiss, 
welche Zweizentrenabstände in der additiven Näherung mitgenommen 
werden sollen, um die Bedingungen zu erfüllen. Beim additiven Ansatz 
treten nach (IOd) eine Reihe von Atomenergien mehrmals auf, so dass 
diese Forderung nicht ohne weiteres erfüllt werden kann. 

Ein Ansatz für €, wenn N > 2, muss also über den additiven Ansatz 
hinausführen. In Erweiterung von (9) und (9a) schlagen wir daher die 
folgende Approximation vor 5 : 

N-1 N 

E = E + ' ' Z;.Z /1 ( 16) 
~ ~ R;./1 
A=l p.=A+l 

M 1 •• MF 

L Cif!> .. fFR{JR{2 
• •• R{! 

fl··fF 
MJ••MF L cx/, .. fFRl•R22 ... Ri; 
ft··fF 

(16a) 

Ein solcher Ansatz erfüllt (3) und (3a) und liefert daher auch (!Oe). Die 
Forderungen (I Oa) bis ( 1 Od) liefern lineare Gleichungen in cx und cx', wie 
man leicht erkennt, wenn man den Zähler und Nenner in ( 16a) mit Z und 
N bezeichnet. Damit nimmt, mit (3a), die Gleichung (16) die Form an: 

NE= z + WN (17) 

wenn mit den NennerN (N =!= 0) multipliziert wird. Nach (lüa) lauten die 
Bedingungsgleichungen 

oNI oZ 1 oW[ aN[ . 
€(Ro) oRi Ro = oRi,Ro + oRi Ro N(Ro) + W(Ro) oRi Ro; (z == 1, ... F). 

(18a) 
Aus (lOb) und (lOc) folgt 

N(RO){ß + E(albl .. . fN)- W(R0)} = Z(RO) (18b) 
und 

()2NI "2zl a2wl 
N(RO)ki + E(RO) oRz Ro = oRi RO + N(RO) aR: RO + 

awaN[ . + 2 oRi ~Ri R 0 ;(z ==I, ... F). 

(18c) 

Gleichung (lOb) ist ein Spezialfall von 18b. Die Anwendung von lim auf 
[K] 
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(16a) liefert einen Quotienten der Form a/a', so dass damit weitere lineare 
Bedingungsrechnungen für die a und a' gefunden sind, weil die E(K) 
bekannt vorausgesetzt werden können. 

Die Entwicklungen von (16a) für kleine und grosse Ri führt ebenfalls zu 
linearen Gleichungen für die a und a', wenn diese Darstellungen mit den 
Grössen Ek und ek nach (7) und (8) in Zusammenhang gebracht werden. 

Somit liegt in (16) und (16a) ein Ansatz für E(R) vor, der alle Bedingungen 
die an ihn gestellt werden können, auf lineare Gleichungen in den freien 
Parametern zurückführt! 

EINIGE BEISPIELE FUR N = 2 

Der einfachste Ansatz nach (9) (9a) ist der mit NI = 1 

_ a 0 + cx1R ZaZb 
E = 1 + a~R + ~' (19) 

wobei cls Forderungen (6a), (6b) und (6d) in Frage kommen. Dieser 
Ansatz ist erwartungsgernäss sehr schlecht, wie die Werte in Tabelle 1 
zeigen, die am H 2 geprüft werden. Geht manzuM = 2 über in der Form 

_ E(O) + a1R + E( oo )R2 ZaZv 
E = 1 + a~R + R 2 + ~' (20) 

so können o:1 und a:~ nach (6a) und (6b) berechnet werden. Die Ergenbisse, 
die ebenfalls in Tabelle 1 aufgenommen wurden, sind gegenüber ( 19) 
verbessert, doch zeigen sie immer noch wesentliche Abweichungen. 

In der Regel zeigen die Erfahrungen, dass mit steigendem M die Approxi­
mation (16), (16a) besser wird, doch hängt es auch davon ab, welche 
Bedingungsgleichungen verwendet werden. Mit dem Ansatz (M = 4): 

_ E(O) + cx1R + cx2R2 + o:3R3 + E( oo )R4 ZaZo 
€ = 1 + a~R + a~R + a~R3 + R4 + ~' (2l) 

können zum Beispiel die sechs freien ai und ai nach (6a), (6b) und (6c), 
sowie nach den Forderungen e1 = e2 = 0 und E 1 = 0 berechnet werden. 
Die Ergebnisse, die wieder gegenüber M = 2 verbessert sind, finden sich in 
Tabelle 1 unter M = 4. Wird dagegen nur (6a), (6b) und daneben 
e1 = e2 = e3 = 0 sowie E 1 = 0 verlangt, so ist das Ergebnis nicht mehr so 
günstig (Tabelle 1, M = 4'). 

Tabelle 1. Beispiele am H 2-Molekül für verschiedne Approximationsstufen. Alle Grössen in 
atomaren Einheiten 

R I M= 1 I M=2 I 
M=4 M=4' M=7 E 

0,5 
I 

-0,839 -0,558 -0,514 -0,452 -0,520 -
1,0 -1,154 -1,132 -1,124 -1,091 -1,124 -1,124 
1,5 -1,173 -1,172 -1,173 -1,170 -1,173 -1,173 
2,0 -1,161 -1,150 -1,142 -1,100 -1,138 -1,138 
2,5 -1,145 -1,122 -1,106 -1,046 

I 

-1,092 -1,094 
3,0 -1,130 -1,100 -1,077 -1,022 -1,049 -1,056 
4,0 -1,101 

I 
-1,070 -1,043 I -1,006 -1,010 -1,013 

I 
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Für Jvf = 7 wurde dann eine vorzügliche Näherung erreicht3 • Für R < 1 ,6 
stimmt dann die Kurve praktisch mit den bisher bekannten besten Kurven­
verläufen überein. Zwischen 1,8 ~ R ~ 2, 7 ist ungefähr die Güte des 
Morseansatzes erreicht, die dann ab R = 2,7 verbessert wird. Mit M = 7 
dürfte, was den ganzen R-Bereich anbetrifft, die bisher beste analytische 
Approxin1ation vorliegen! Im Falle M = 7 wurden neben den Forderungen 
(6a), (6b) und (6c) die Grössen E(O). E 1, E 2, E 3 sowie E( oo), ev e2, e3, e4 , 

e5, e6 und e7 herangezogen, wobei e6, da e8 und e10 grosse negative Zahlen 
sind (ec = e0 = e11 = 0) repräsentative für die folgenden ek -Werte kleiner 
angesetzt wurde (e6 = - 11,00 während exakt e6 = - 6,49). 

Die Potentialkurven anderer zweiatomiger Moleküle sind weniger gut 
bekannt, sodass mit den Ergebnissen von Variationsrechnungen verglichen 
werden muss, deren Genauigkeiten nicht bekannt sind. Mit A1 = 4 nach 
(21) wurden HeH+ und H 2 + approximiert. Die Ergebnisse sind in Tabelle 2 
zusammengefasst. Während die V ergleichswerte von HeH + aus Näher­
ungsrechnungen stammen6 • 7, ist die entsprechende Energiekurve von H 2+ 
(Grundzustand) praktisch exakt bekannt8 • 

Tabelle 2. Approximationen (M = 4) für die Potentialkurven von HeH t- und H 2+. Alle 
Grössen in atomaren Einheiten 

HeH+ H2+ 

R 'E 

0,5 -2,010 +0,298 +0,245 
1,0 -2,895 -2,877 -0,442 --0,452 
1,5 -1,950 -2,949 -0,579 --0,580 
2,0 -2,935 -2,923 -0,600 -0,600 
2.5 -2,921 -2,902 -0,592 --0,593 
s;o -2,913 -2,888 -0,577 -0,578 
4,0 -2,907 -2,899 -0,580 -0,546 

Die Potentialkurve von He2 + ist noch nicht ausreichend bekannt. Nach 
(21) mit M = 4 erhält man die folgenden Werte (Tabelle 3). 

Tabelle 3. € mit M = 4 für He2 +. Alle Grössen in atomaren Einheiten 

R 0,5 1,0 1,5 

I 

2,0 
! 

2,5 3,0 4,0 
---

E -2,785 -4,666 -4,964 
I 

-5,014 
I 

--5,000 -4,975 -4,939 
I ! 

Hier wurden die Forderungen (6a), (6b) und (6c) erfüllt, sowie e1, e2 und 
E 1 berücksichtigt. In ähnlicher Weise wurde auch bei den Rechnungen der 
Tabelle 2 vorgegangen. 

EIN EINFACHES BEISPIEL FUR N = 3 

Obwohl die Untersuchungen über den Ansatz (16), (16a) noch in vollem 
Gange sind, soll an einem kleinen Beispiel gezeigt werden, wie der Ansatz 
zu verwenden ist. Dabei soll es weniger auf grosse Genauigkeit ankommen, 
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als zu zeigen, in welcher Weise die verschiendenen Forderungen zu berück­
sichtigen sind. 

Wir betrachten dazu den Vorgang der Rekombination, Dissoziation oder 
Streuung. Die drei Atome seien zwei H-Atome und ein He-Atom. Es liegen 
also drei unabhängige Kernabstände vor, wie in Abb. 1 angegeben. 

Physikalisch und chemisch handelt es sich dabei gerrauer um die Vorgänge: 

He+ H + H ~ H 2 +He (Rekombination, Dissoziation) (22a) 

und 

He + H 2 ~ He + H 2 (Streuung) (22b) 

Liegen die drei Atome auf einer Geraden, so lassen sich graphisch zwei 
Flächen für E(R) angeben, die durch die Anordnung der drei Atome unter­
schieden werden können. 

:r: 
Cl> 

:r: 
0: 

RHeH1 

Abb. 2. Energiefläche für die 
Anordnung: H-He-H1 

Nach (3a) haben wir hier: 

RH eH 

Abb. 3. Energiefläche für die 
Anordnung: He-H-H1 

(23) 

Im Ansatz (16a) wollen wir M 1 = M 2 = M 3 = 1 setzen. Aus Symmetrie­
gründen muss für die cx und cx' gelten: 

CXklm = CXlkm 
I I 

CXklm = CXlkm· (24) 
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Danach ergibt sich für (16a): 

cxooo + cxloo(Rl + R2) + cxoOIRa + cxnoRIR2 + 
€= 

1 + a~oo(Rl + Rz) + a~olRa + a~10R1R2 + 
+ aloi(RI + R2)Ra + cxulRIRzRa 

+ a~ 01 (R1 + R2)R3 + a~11R1R2R3 + W. 

(25) 

Jetzt nehmen wir die Übergänge nach (14) vor, die uns zu den Assoziationen 
führen werden. Danach ergibt sich (in atomaren Einheiten), wenn alle 
Kernabstände gegen unendlich gehen: 

aui 
-,-· = E(He) + 2E(H) = -- 3,904 
ctlll 

(26a) 

Das vereinigte Atom von H + H + He ist Be, sodass sich (alle R;.1t ->- 0) 

a 000 = - 14,670 (26b) 

ergibt. Als weitere Übergänge in E(R1R2R3 ), indem wir danach das ent­
sprechende W addieren, ergeben sich die folgenden: 

und schliesslich: 

C\:ooo + (aloo + aooi)R + a101R2 3 

RvR2 -+ 00 

He .. . H 2 

R1 ,R3 ~ oo 
H ... He ... H 

R3 -+Ü 
R1 = R2 == R 
He ... He 

R2 -+ 0 

E = . 1 + (cx~ 00 + a~ 01)R + a~ 01R2 = R R1 = R 3 = R 
LiH 

Wegen (27) und (28) setzen wir 

(27) 

(28) 

(29) 

(30) 

(31) 

Wir wir aus den Ergebnissen des vorigen Abschnitts wissen, ist mit 1\!I = 1 
keine gute Näherung zu erwarten; da es uns aber um das Prinzipielle geht, 
wollen wir vorerst diesen Weg weitergehen. Zuerst können a:110 und a111 

in (27) durch die Grenzwerte für R-+ 0 und R-+ oo festgelegt werden. 
Man erhält damit: 

cx110 == - 5,807 (32) 

was, a:111 betreffend, natürlich mit (26a) übereinstimmen muss. Damit wird 
die Kurve von H 2 wie zu erwarten sehr grob erfasst. Die in diesem Rahmen 
beste Näherung wird mit cx~11 = 0,8 erhalten. 

In (28) ist nur noch a101 frei. Da in (28) für R2 -+ 0 die Elektronenenergie 
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in die des Lithiums übergeht, sollte man o:101 = - 7,979 setzen, doch zeigt 
sich, dass damit die Kurve in (28) im Widerspruch mit der Erfahrung ein 
Minimum zeigt. Wir verlassen daher diese Forderung und setzen: 

0:101 = - 5,904 (33) 

was zu einer plausiblen Potentialkurve führt, wenn man den sehr einfachen 
Ansatz (25) berücksichtigt. Damit wird freilich in (30) auch nicht mehr der 
richtige Wert für R ~ oo erhalten, was nicht so schwerwiegend sein sollte, 
da in (30) zuvor der Übergang zum vereinigten Atom von He+ H vorge­
nommen worden ist. 

Mit den Werten von o:000 und o:110 von (26b) und (32) kann man nun in 
(29) hineingehen. Wegen (31) ist daher noch o:100 und a:~ 00 frei. Wir setzen 
wieder vereinfachend: 

o:~oo = 1 (34) 
und finden, dass mit 

0:100 = - 7,500 (35) 

die He-He-Wechselwirkung nach (29) ganz grob erfasst wird. In (30) 
schliesslich bleiben jetzt nur noch o:001 und cx~ 01 übrig. Bezogen auf den 
Grenzwert (33) für R ~ oo verlangen wir, dass Stelle und Wert des Mini­
mums mit dem von LiH übereinstimmen. Damit gibt sich: 

a:001 = - I 0, 754 0:~01 = 1 ,507 (36) 

Auf diese Weise haben wir ganz grob mit Hilfe der Vorstellung der Atomas­
soziationen die a: und o:' in (25) festgelegt. Der Übergang zu den beiden 
linearen Anordnungen der Atome liefert qualitativ Flächenverläufe wir in 
Abb. 2 und 3 angegeben! 

Das Verfahren kann durch grössere M; in (16a) beliebig verbessert 
werden. Mit der hier vorliegenden Energiehyperfläche ist es das erste Mal 
gelungen, eine analytische Approximation der Energie von drei Atomen zu 
finden, die qualitativ die Rekombination (Dissoziation) eines zweiatomigen 
Moleküls im Stoß. mit einem Atom, und die Streuung eines Atoms an einem 
zweiatomigen Molekül ~rfasst. Die Untersuchungen werden fortgesetzt. 

Frau I. Funke und Frau. A. Troste/ sei herzlich für die hierzu durchgeführten 
numerischen Rechnungen gedankt) die teilweise mit der elektronischen Rechenmaschine 
G 3 erledigt werden mussten. 
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