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Nach einer Einleitung in die Rolle der Energiefunktionen (Energiehyper-
flachen) ¢ in Spektroskopie und Theoretischer Chemie, wird ein Ansatz
angegeben und diskutiert, der eine ndherungsweise Darstellung & von Ener-
giefunktionen mehratomiger Systeme ermdéglicht und noch freie Parameter
enthalt. Diese kénnen durch Forderungen an & berechnet werden, wobei
sich nur lineare Gleichungen ergeben.

Auf diese Weise konnen alle von Seiten der Theorie und der Empirie zu
stellenden Forderungen an & erfillt werden. Das Verfahren, welches
teilweise ein Interpolations- oder Extrapolationsverfahren der Energiehyper-
flachen darstellt, wird an einigen Beispielen erldutert. Die Untersuchungen
sind noch im Gange.

Der Zusammenhang zu den Absolutrechnungen wird aufgezeigt.

EINLEITUNG

Kaum ein anderer Begriff ist in der theoretischen Molekiilspektroskopie
so fundamental, wie der der Energichyperflache oder der Energiekurve. Er
beruht in seiner Begriindung auf dem Naherungsstandpunkt, dass die
Atomkernbewegungen wesentlich langsamer verlaufen, als die Bewegungen
der Elektronen. Aus diesem Grunde kann in sehr guter Niherung fiir
jeden Elektronenzustand (k) eine Molekiilenergie ez als Funktion der
Kernlagen R im Raum eingefiithrt werden:

«r = ex(R) (1)

Der Vektor R steht fur die Gesamtheit aller # unabhéngigen Kernkoordi-
naten R,R,, .. . ,Rp:

R = {R,R,, ... Ry} (1a)

Bei N Atomkernen betragt F = 3N — 6, wenn alle Kerne frei beweglich
sind.  F werkleinert sich, wenn die Bewegungen der Atomzenten einge-
schriankt werden, Liegen alle N Kerne auf einer Geraden, so ist ¥ = N — 1.
Jenachdem ob F =1, F = 2 oder F > 2 ist, sprechen wir oft von Energie-
kurven, Energieflaichen oder Energiehyperflichen, auch der Ausdruck
Potentialkurve oder -fliche ist iiblich.

Wellenmechanisch ergeben sich die Energiefunktionen aus der zeitunab-
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APPROXIMATIVE POTENTIALKURVEN FUR MOLEKULE
hingigen Schrédinger-Gleichung des jeweils vorliegenden Elektronensystems
Hyp(w,o,R") = e (R)p(w,0,R’) (2)

wobei H der Hamiltonoperator bedeutet und e der dazugehérige Molekiil-
Energieeigenwert ist, der sich in dieser Form vorerst formal als Funktion
aller 3N Kernkoordinaten ergeben kann R’ = {R,R,, ..., Ry}. Danach
kann dann zu den F unabhingigen Koordinaten iibergegangen werden,
Entsprechendes gilt auch fiir #(w,0,R’). w und o stellen die Gesamtheiten
der elektronischen Orts- und Spinkoordinaten dar.

Aus (2) lasst sich exakt zeigen, dass sich ¢’ in der Form

¢ =E'R) + WR') = ER) + W(R) (3)

ergibt, in welcher E’(E) die reine Elektronenenergie und W die Kernab-
stossungsenergie darstellt:

A
s ALy
WR) = > > Roy (8a)
A=1 p=2A+1

wobei R, der Abstand zwischen A-ten und p-ten Kern bedeutet, die beide
jeweils die Kernladungen Z; und Z, tragen (Z;; A =1, ..., N). Die oben
erwahnte Naherung erlaubt nun die verschiedenen (j) Energiezustinde ex;
des Atomkernsystems aus einer Wellengleichung von der Form:

(K + ek) xig(R) = €zxus(R) 4)

zu berechnen, in welcher K der Operator der kinetischen Energie der Kerne
darstellt. yz;(R’) ist dann die Wellenfunktion der N Kerne und gehért
zum j-ten Energiezustand mit der Energie eg;, wenn dieser auf der k-ten
Energichyperfliche € vorliegt. In y kann von R’ nach R iibergegangen
werden, wenn, wie bei ¢, die Bewegungen der Gesamttranslation und der
Gesamtrotation abgespalten werden. Die Koordinaten der Kernspins sind
in (4) nicht beriicksichtigt worden. Mit Hilfe von e(bzw. ¢') und ¢ in (2)
lassen sich alle Aussagen iiber molekulare Elektronenspektren gewinnen,
wobei (2) nur niherungsweise gelost werden kann. Aus (4) ergeben sich
dann, bei bekanntem e(bzw. €'}, die Informationen iiber die Spektren, die
aus den Kernsystemzustanden folgen! Wir sehen dabei noch einmal die
fundamentale Rolle von e(bzw. €’). Da W in (3) in jedem Falle bekannt ist,
geht die Frage nach E, einer Funktion, die im ganzen R-Raum (bzw.
R’-Raum) endlich bléibt, im Gegensatz zu e,

APPROXIMATIVE ENERGIE (POTENTIAL-)FUNKTIONEN

Die Behandlung von (2) stosst auch heute noch, trotz einer Reihe in
letzter Zeit gemachter Fortschritte auf grosse Schwierigkeiten.  Thre
Beseitigung ist Aufgabe der Quantenchemie. Die hier aufgeworfenen Fragen
sind auch deshalb schon von grosser Bedeutung, da die.Kenntnis der Energie-
hyperflichen auch in der Theorie der Reaktionen notwendig ist. Aus allen
diesen Griinden ist schon seit lingerer Zeit ein halbtheoretischer Weg
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H. PREUB
eingeschlagen worden, der allerdings bisher nur fir F =1 zum Erfolg
gefihrt hat. Man wihlt eine analytische Naherung ¢ fiir e:
ER € ©)
wobel & noch eine Reihe von freien Parametern o;(i = 1,2 . . .) enthélt
€ =&R,R,,...Rp; aj,05.. ) (5a)

die entweder an empirischen oder theoretisch besttmmten Grossen justiert
werden. Mit diesen approximativen & bzw. & wird dann in (4) eingegangen
und versucht, die Energiezustande des Kerngeriistes zu berechnen, was in
vielen Fallen nur naherungsweise méglich ist.

In der Bestimmung der o; bestehen gewisse Freiheiten. Im allgemeinen ist
es tiblich, wenn zweiatomige Molekille vorliegen (F = 1), die folgenden
charakteristischen Grossen zu verwenden:

R, = Bindungsabstand
B = Bindungsenergie
k = Kraftkonstante
e(0) = Molekiilenergie fur R — 0. (6)

Daraus folgen vier Bedingungsgleichungen an e(R):

de
Rlr, — (6a)
(Ry) = B + €(0) (6b)
%
VT 7, =k (6¢)
lim €(R) = e(0), (6d)
R—0

aus denen sich vier «; bestimmen lassen.

Wir wollen nicht naher auf den Fall F = 1 eingehen, weil wir hier mehr
den TFall F > | behandeln wollen, aber es seien einige fur das folgende
wichtige Zusammenfassungen iiber den Fall FF = 1 angegeben.

Betrachtet man die vielen Ansitze fur & wenn zwei Atome vorliegen,
so erkennt man, dass fast alle nicht die Form (3) haben. In den meisten
Fillen ist daher auch die Forderung:

lim Re(R) = ZaZp (6e)
R—0
nicht erfillt, die sich aus (3) ergibt, wenn nach (3a)
ZoZy

W:R.

(3e)
Es lassen sich aber noch weitere Forderungen an e stellen. So wissen wir,
dass sich fiir kleine R die Entwicklung (Elektronenzahl fest):
ER) =E(0) + E,R*+ ER 4. .. (R ) (7
361
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APPROXIMATIVE POTENTIALKURVEN FUR MOLEKULE
fir E(R) angeben lasst, wobei E,,E,, . . . Konstanten sind und E(0) die

Elektronenenergie des sogenannten. ‘‘vereinigten Atoms’ darstelltl. Fir
grosse Kernabstande hat man bisher die Entwicklung?:

e e
e(R):e(oo)+1—$+ﬁ%+...(R>l) (8)
angenommen. Die Werte der Konstanten ¢;,6,, . . . hingen vom Bindungs-
typus ab. Bei zwei gleichen Atomen ist zum Beispiel
6=0;(j=1%12,...57911, ...
Neben den Grossen in (6) sind jetzt noch E(0); E;(j=2,3, . . .) und
¢(j = 1,2, . . .) hinzugekommen, sowie Z; und Z;, die in der Forderung

(6e) auftreten.

Es sollte daher moglich sein, mit Hilfe dieser Gréssen zu besseren ¢ zu
gelangen.

Es ist dabei zu bedenken, dass spektroskopisch zwar der Verlauf um den
Bindungsabstand von grosster Bedeutung ist, dass aber der Verlauf fur
grosse und kleine R wichtig wird, wenn auch héhere Schwingungs- und
Rotationszustinde ausreichend genau aus (4) erhalten werden sollen.
Gleichzeitig wird dadurch auch wieder die Energickurve um R, besser
erfasst.

Andererseits ist zur Berechnung von Streuvorgingen die Energiekurve fiir
sehr kleine R notwendig.

EIN NEUER ANSATZ FUR ¢, WENN F = (N=2)
Ein Ansatz fiir €, der alle. Forderungen zu erfiillen gestattet, ist

e=FE + Zj{z” (9)

mit
og + R 4. ayRM
L4+ R+ ... + oyRM

Dieser Ansatz fithrt bei der Bestimmung der freien Parameter o; und o} auf
lincare Gleichungen und hat die verlangte Form (3), erfullt somit (6e).
Die Wahl von M ist vorerst frei und richtet sich nach der Anzahl der Ford-
erungen an ¢ und nach der gewiinschten Genauigkeit, soweit diese nach-
priffbar ist, denn zur Zeit liegen nur sehr wenige Energickurven vor und
auch die bisher mit hoher Genauigkeit berechneten e-Werte sind gering!
Liegen namlich fiir ein Molekiil fiir eine Reihe von R-Werten die e-Werte
vor, so kénnen, neben den Forderungen (6a), (bis), (6d) sowie (7) und (8),
auch diese Werte dazu herangezogen werden, um einige o; und of zu
bestimmen. Die so erhaltenen Bestimmungsgleichungen sind, wie man
leicht sieht, ebenfalls linear in den «; und of.

Es set noch der Hinweis gemacht, dass es immer noch bequemer ist, die
Energiekurve fiir grosse oder kleine R-Werte naherungsweise zu berechnen,
als mit einer Rechenmethode im ganzen R-Bereich, und dass es nach den
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H. PREUS

bisherigen Uberlegungen geniigt, diese im Mittelbereich fiir einige ausge-
wihlte R-Werte sehr genau zu kennen, was Aufgabe der ab-initio-Rech-
nungen ist. Nach (9) (92) kann dann mit allen zur Verfiigung stehenden
Kenntnissen eine approximative Potentialkurve erhalten werden. Wir
sehen daraus, wie sich Absolutrechnungen und Ansitze fiir die Energiekurven
erganzen, damit schliesslich eine genidherte Energiefunktion erhalten wird,

aus der sich dann mit Hilfe der Gleichung (4) alle Kernbewegungen ableiten
lassen.

DER ERWEITERTE ANSATZ FUR ¢, WENN F > 1(N > 2)

Die gleichen Uberlegungen wie im Falle F = 1 koénnen auch hier wieder
angewendet werden. Auch hier kinnen einige e-Werte aus Absolutrech-
nungen mit herangezogen werden, damit die approximierte Energiehyper-
flache erhalten werden kann.

Die Forderungen (6a) bis (6d) haben jetzt zum Beispiel die Form

de .
D—IERO:O (l:zl,?,...F) (IOa)
¢(RY) = B + e(a|blc| ... |N) (10b)
2 .
S}% o=k G=12...F (10c)
lim e(R) = e(a|blc] ... |N), (10d)
R—w

wobei die R; die freien Kernabstinde bedeuten
R = {R,R,,...Rr}. (11)

Die Kraftkonstante £; ist beziglich der Koordinate £&; definiert.
e(alble| ... | N) bedeutet die Energie der N getrennten Atome (separated
atoms), wobei B diejenige Energie darstellt, die das System gegeniiber
e(alble] ... |N) gewinnt, wenn es in die Gleichgewichtkonstellation
(adiabatisch) iibergeht. Die Bildungswarme wird aus B erhalten, wenn
dieses durch die Energie der Nullpunktschwingungen korrigiert wird. An
Stelle von (6e) tritt jetzt:

lim Rye(R) = ZZp (Ap = 1,2, ... N). (10e)

Ry 0

Fiir ¥ > 2 lassen sich aber noch weitere Bedingungen an <(R) finden!
Hier hilft die Vorstellung der Atomassoziationen [K] weiter*. Fur N =2
lassen sich zwei Atomassoziationen angeben, namlich:

[a|8], [ab] (12)

wenn die Atome ¢ und b vorliegen. Die dazugehérigen Energien E(K)
nannten wir oben:

e(alb) = €(o0) = E(0); Ef(ab) = E(0). (12a)
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APPROXIMATIVE POTENTIALKURVEN FUR MOLEKULE

Fiir drei Atome 4, b und ¢ lassen sich insgesamt finf Assoziationen angeben:

[e]b]e] [¢] ab]
[a]bc] [abe] (13)
[6]ac]

mit den dazugehérigen Energien des Elektronensystems (ohne Kernab-
stossung) :

E(alb|c) E(c|ab) (13a)
E(a|be) E (abe).
E(b|ac)

Der Ubergang zu einer Assoziation wird dadurch erreicht, indem einige

Kernabstinde gegen Null, andere gegen Unendlich gehen, z.B. in (13a)
lim E = E(c|ab). (13b)
Rap—0

Rge—>0

Allgemein schreiben wir fiir die Elektronenenergie:

lim ER) = E(K), (14)
K]

wenn zur Assoziation [K] iibergegangen wird.

Damit haben wir weitere Bedingungen an e (bzw. E) gefunden, indem
noch (14) erfiillt sein soll. Dabei kann im ersten Schritt auch zu sogenannten
unvollstindigen Atomassoziationen tbergegangen werden, indem nur
einige Kernabstinde gegen Null gehen. Die Energie auf der rechten Seite
von (14) stellt dann, im Gegensatz zum Ubergang zur vollstindigen Assozia-
tion, die Elektronenenergie eines Molekiils dar, welches niederzentriger als
das urspriingliche Molekiil ist. Beim vollstindigen Ubergang resultieren die
Energien freier Atome.

Wir geben zur Erlduterung die Verhiltnisse schematisch am H,O wieder:

Assoziation
r N
unwollstindig vollstandig
— [O|H|H] “‘separated atoms”
” HF (Molekiil) [H|F]
H,O HF (Molekiil) [H|F] (15)
T\ HeO (zweiatomiges System) [He|O]
— ' [Ne] “united atoms”

In der Theorie der Atomassoziationen nennt man alle Atome, die in einer
Assoziation durch Zusammenfallen von Kernladungen entstehen, Teilver-
einigungen. Zwischen Teilvereinigungen untereinander und mit Atomen
lassen sich dann wieder Entwicklungen nach (8) angeben, die zu neuen
Forderungen an ¢ fithren. Man macht dabei davon Gebrauch, dass sich die
Wechselwirkungen zwischen weit entfernten Atomen nach (8) in sehr guter
Naherung additiv aus Wechselwirkungen zwischen zwei Atomen zusam-
mensetzen.
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Um die bei zwei Zentren durchgefithrte Methode auf mehrzentrige Sys-
teme zu erweitern, muss also ein Ansatz fiir N > 2 gefunden werden, der
alle genannten Bedingungen erfiillen kann. Der zuweilen verwendete Ansatz
fir N > 2, der sich additiv aus zweizentrigen Potentialkurven zusam-
mensetzt, kann nicht alle Bedingungen erfiillen. Er lisst sich bestenfalls
fiir kleine Abweichungen aus den Gleichgewichtslagen verwenden, wenn die
Wechselwirkungen zwischen den Bindungen klein sind. Die Forderungen
(14) kénnen auf diese Weise nicht erfiillt werden. Ebenso treten bei den
Bedingungen (10a) und (10c) Schwierigkeiten auf, da man nicht weiss,
welche Zweizentrenabstinde in der additiven Naherung mitgenommen
werden sollen, um die Bedingungen zu erfullen, Beim additiven Ansatz
treten nach (10d) eine Reihe von Atomenergien mehrmals auf, so dass
diese Forderung nicht ochne weiteres crfiillt werden kann.

Ein Ansatz fir ¢, wenn N > 2, muss also {iber den additiven Ansatz
hinausfithren. In Erweiterung von (9) und (9a) schlagen wir daher die
folgende Approximation vor®:

N—-1 N
~ Z,Z
e=E+ > > o (16)
fymy e W R
M,. . Mr
afl,..pr{'Rjzfz . e Rg&’
E(R,,...Rp) = M i . (16a)
OL_;‘,_‘ erfRzz v R{;.F
futr

Ein solcher Ansatz erfilllt (3) und (3a) und liefert daher auch (10e¢). Die
Forderungen (10a) bis (10d) liefern lineare Gleichungen in o und o, wie
man leicht erkennt, wenn man den Zihler und Nenner in (16a) mit Z und
N bezeichnet, Damit nimmt, mit (3a), die Gleichung (16) die Form an:

Ne =7Z + WN (17)

wenn mit den Nenner N (N = 0) multipliziert wird. Nach (10a) lauten die
Bedingungsgleichungen

ON V7 W
— PR 0 0
R SRR = 3R T 3Ry Ro VRY F W) § SR Re = Lo B
(18a)
Aus (10b) und (10c) folgt
NR{B + «(alb] . — WR} = Z(R) (18b)
und
RN 27| 12W
0 0 — 0
NR )ki+ﬁ(R)bR2R DR%IRO+N(R)DRZ RD—*
W OIN
+2 = 3R 3R, RO’(Z LB
(18c)
Gleichung (10b) ist ein Spezialfall von 18b. Die Anwendung von lim auf
(K]
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(16a) liefert einen Quotienten der Form «/a’, so dass damit weitere lineare
Bedingungsrechnungen fiir die « und o gefunden sind, weil die E(K)
bekannt vorausgesetzt werden kénnen.

Die Entwicklungen von (16a) fir kleine und grosse R; fuhrt ebenfalls zu
linearen Gleichungen fiir die o und o', wenn diese Darstellungen mit den
Grossen Ej und ¢y nach (7) und (8) in Zusammenhang gebracht werden.

Somit liegt in (16) und (16a) ein Ansatz fiir e(R) vor, der alle Bedingungen
die an ihn gestellt werden kénnen, auf lineare Gleichungen in den freien
Parametern zuriickfithrt!

EINIGE BEISPIELE FUR N = 2
Der einfachste Ansatz nach (9) (9a) ist der mit M =1

. ot SV AV A

wobei 2ls Forderungen (6a), (6b) und (6d) in Frage kommen. Dieser
Ansatz ist erwartungsgemdss sehr schlecht, wie die Werte in Tabelle 1
zeigen, die am H, gepriift werden. Geht man zu M = 2 iiber in der Form

E(O) + aR + (00)RE  ZoZy
TR+ R "R

&= (20)
so kénnen o; und a7 nach (6a) und (6b) berechnet werden. Die Ergenbisse,
die ebenfalls in Tabelle ! aufgenommen wurden, sind gegeniiber (19)
verbessert, doch zeigen sie immer noch wesentliche Abweichungen.

In der Regel zeigen die Erfahrungen, dass mit steigendem M die Approxi-
mation (16), (16a) besser wird, doch hingt es auch davon ab, welche
Bedingungsgleichungen verwendet werden. Mit dem Ansatz (M = 4):

E(0) + R + apR? + azR® + E(c0)RY  ZoZp
I+ R + ayR + oph® + R R

kénnen zum Beispiel die sechs freien «; und of nach (6a), (6b) und (6c),
sowie nach den Forderungen ¢, = ¢; = 0 und E; = 0 berechnet werden.
Die Ergebnisse, die wieder gegenitber AL = 2 verbessert sind, finden sich in
Tabelle 1 unter M = 4. Wird dagegen nur (6a), (6b) und daneben
e = ey = ¢ = 0 sowie E; = 0 verlangt, so ist das Ergebnis nicht mehr so
giinstig (Tabelle 1, M = 4').

€ =

(21)

Tabelle 1. Beispiele am Hy-Molekiil fir verschiedne Approximationsstufen. Alle Gréssen in
atomaren Einheiten

R ’ M= 1 ’ M=2 M=+ M=4 M=7 c
05 | —0.839 —0,558 —0,514 0,452 —0,520 —
1,0 — 1,154 — 1,132 —1,124 — 1,001 —1,124 —1,124
1,5 —1,173 —1,172 —1,173 —~1,170 —1,173 —1,173
2.0 —1,161 1,150 —1,142 —1,100 ~ 1,138 —1,138
2.5 —1,145 —1,122 —1,106 —1,046 —1,092 — 1,094
3.0 1,130 — 1,100 —1,077 —1,022 — 1,049 — 1,056
4,0 —1,101 —1,070 —~1,043 | —1,006 —1,010 —1,013
|

366



H. PREUS

Fitr M = 7 wurde dann eine vorziigliche Naherung erreicht®. Fiir R << 1,6
stimmt dann die Kurve praktisch mit den bisher bekannten besten Kurven-
verlaufen twiberein. Zwischen 1,8 € R < 2,7 ist ungefahr die Giite des
Morseansatzes erreicht, die dann ab R = 2,7 verbessert wird. Mit M =7
diirfte, was den ganzen R-Bereich anbetrifft, die bisher beste analytische
Approximation vorliegen! Im Falle M = 7 wurden neben den Forderungen
(6a), (6b) und (6¢) die Grossen E(0). E;, E,, E; sowie E(0), ¢, €y, €5, ¢4,
es, ¢ und ¢, herangezogen, wobel ¢, da ¢; und e, grosse negative Zahlen
sind (e, = ¢ = ¢;; = 0) reprasentative fir die folgenden ¢ -Werte kleiner
angesetzt wurde (¢; = — 11,00 wihrend exakt ¢ = — 6,49).

Die Potentialkurven anderer zweiatorniger Molekiile sind weniger gut
bekannt, sodass mit den Ergebnissen von Variationsrechnungen verglichen
werden muss, deren Genauigkeiten nicht bekannt sind. Mit M = 4 nach
(21) wurden HeH+ und H,* approximiert. Die Ergebnisse sind in Tabelle 2
zusammengefasst. Wahrend die Vergleichswerte von HeH* aus Niher-
ungsrechnungen stammen®7, ist die entsprechende Energiekurve von Hy*
(Grundzustand) praktisch exakt bekannt®,

Tabelle 2. Approximationen (M = 4) fur die Potentialkurven von HeH' und H,*. Alle
Grossen in atomaren Einheiten

HeH* ‘ H,+
R ‘ : ’ c 2 '1 c
0,5 | —2010 | — 10,298 10,245
1.0 9895 | —2877 0,442 0,452
1.5 \ ~1950 | —2,949 — 0,579 — 0,580
20 2,935 9,923 0,600 — 0,600
25 — 2,921 — 2,902 0,592 0,593
3.0 2913 2,888 —0.577 0,578
40 =27 2899 — 0,580 — 0,546
| i

Die Potentialkurve von He,* ist noch nicht ausreichend bekannt. Nach
(21) mit M = 4 erhilt man die folgenden Werte (Tabelle 3).

Tabelle 3. & mit M = 4 fir He,*. Alle Grossen in atomaren Einheiten

?

—5014 | —5000 | —4975 ’ —4,939

R 0,5 1,0 1,5 ’ 2,0 25 | 30 ‘ 4,0
g |—2,785 —4,666 —4,9641

Hier wurden die Forderungen (6a), (6b) und (6¢) erfiillt, sowie ¢;, ¢, und
E, berticksichtigt. In dhnlicher Weise wurde auch bei den Rechnungen der
Tabelle 2 vorgegangen.

EIN EINFACHES BEISPIEL FUR N = 3

Obwohl die Untersuchunger iiber den Ansatz (16), (16a) noch in vollem
Gange sind, soll an einem kleinen Beispiel gezeigt werden, wie der Ansatz
zu verwenden ist. Dabei soll es weniger auf grosse Genauigkeit ankommen,
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als zu zeigen, in welcher Weise die verschiendenen Forderungen zu beriick-
sichtigen sind.

Wir betrachten dazu den Vorgang der Rekombination, Dissoziation oder
Streuung. Die drei Atome seien zwei H-Atome und ein He-Atom. Es liegen
also drei unabhangige Kernabstiande vor, wie in 4bb. I angegeben.

H

& R,

/

N\
Abb. 1

Physikalisch und chemisch handelt es sich dabei genauer um die Vorgénge:
He + H 4+ H = H, + He (Rekombination, Dissoziation)  (22a)
und

He + H, = He 4+ H, (Streuung) (22b)

Liegen die drei Atome auf einer Geraden, so lassen sich graphisch zwei
Flichen fiir ¢(R) angeben, die durch die Anordnung der drei Atome unter-
schieden werden kénnen.

— ‘ .

T -
@ =
T T
[+ 4 [+4
=
Ryeri Riten
Abb. 2. Energieflache fir dic Abb. 3. Energiefliche fir die
Anordnung: H—He—H? Anordnung: He—H—H*

Nach (3a) haben wir hier:

2 2 1
RtTERTE %)
Im Ansatz (16a) wollen wir M; = M, = M = 1 setzen. Aus Symmetrie-
griinden muss fiir die « und «  gelten:

w/'

Oklm = Okm Oll’clm = a;lcm~ (24)
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Danach ergibt sich fiir (16a):

®ggo T 1g0(Ry + Ry) + wonRs + agy iRy +
1 + ajgo(Ry + Ry) + ogeifly + “{10R1R2 +
+ aygr(Ry + Rp) Ry + oy RiRyRy +W
+ aji(Ry + Re)Rg + ajy RiRyRy '
(25)
Jetzt nehmen wir die Uberginge nach (14) vor, die uns zu den Assoziationen

fithren werden. Danach ergibt sich (in atomaren Einheiten), wenn alle
Kernabstinde gegen unendlich gehen:

€ =

AU F(He) + 2E(H) = — 3,904 (26a)

1
Das vereinigte Atom von H 4 H -+ He ist Be, sodass sich (alle R;, — 0)
agge = — 14,670 (26b)

ergibt. Als weitere Ubergange in E(R;R,R,), indem wir danach das ent-
sprechende W addieren, ergeben sich die folgenden:

o o 2o + oty 1 Ry,R, — © @7)
010 + gy Ry He... H,
o m + ol 2 Ry,Ry — (28)
T ool Ry H...He...H
R 0 9
g — o0 T 2090 + 0y R + i R3 ZR =R (29)
1+ 200k + g0k " R He ... He
und schliesslich:
c — aggo + (ogo -+ o) R + 21902 = i 11;2 Z?{ =R (0
1 4 (aq00 + agor) R + a1 RR® R LilH °

Wegen (27) und (28) setzen wir

ajre = g = 1. (31)
Wir wir aus den Ergebnissen des vorigen Abschnitts wissen, ist mit M = 1
keine gute Niherung zu erwarten; da es uns aber um das Prinzipielle geht,
wollen wir vorerst diesen Weg weitergehen. Zuerst konnen og;, und oy,

in (27) durch die Grenzwerte fiir 2 — 0 und R — oo festgelegt werden.
Man erhilt damit:

aype = — 5,807 o = — 3,9040qy5, (32)
was, oy, betreffend, natiirlich mit (26a) iibereinstimmen muss. Damit wird
die Kurve von H, wie zu erwarten sehr grob erfasst. Die in diesem Rahmen

beste Naherung wird mit og,, = 0,8 erhalten.
In (28) ist nur noch ay,, frei. Da in (28) fur R, — 0 die Elektronenenergie
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in die des Lithiums iibergeht, sollte man o, = — 7,979 setzen, doch zeigt
sich, dass damit die Kurve in (28) im Widerspruch mit der Erfahrung ein
Minimum zeigt. Wir verlassen daher diese Forderung und setzen:

oy = — 5,904 (33)

was zu einer plausiblen Potentialkurve fiithrt, wenn man den sehr einfachen
Ansatz (25) berticksichtigt. Damit wird freilich in (30) auch nicht mehr der
richtige Wert fiir R — oo erhalten, was nicht so schwerwiegend sein sollte,
da in (30) zuvor der Ubergang zum vereinigten Atom von He + H vorge-
nommen worden ist.

Mit den Werten von agg, und a4 von (26b) und (32) kann man nun in
(29) hineingehen. Wegen (31) ist daher noch o4 und a4, frei. Wir setzen
wieder vereinfachend:

oo = 1 (34)
und finden, dass mit
ay99 = — 7,500 (35)

die He-He-Wechselwirkung nach (29) ganz grob erfasst wird. In (30)
schliesslich bleiben jetzt nur noch o,y und «gyy, iibrig. Bezogen auf den
Grenzwert (33) fiir R — oo verlangen wir, dass Stelle und Wert des Mini-
mums mit dem von LiH iibereinstimmen. Damit gibt sich:

dgor = — 10,754 ooy = 1,507 (36)

Auf diese Weise haben wir ganz grob mit Hilfe der Vorstellung der Atomas-
soziationen die « und o' in (25) festgelegt. Der Ubergang zu den beiden
linearen Anordnungen der Atome liefert qualitativ Flachenverlaufe wir in
Abb. 2 und 3 angegeben !

Das Verfahren kann durch gréssere M; in (16a) beliebig verbessert
werden. Mit der hier vorliegenden Energiehyperfliche ist es das erste Mal
gelungen, eine analytische Approximation der Energie von drei Atomen zu
finden, die qualitativ die Rekombination (Dissoziation) eines zweiatomigen
Molekiils im StoBl mit einem Atom, und die Streuung eines Atoms an einem
zweiatomigen Molekiil erfasst. Die Untersuchungen werden fortgesetzt.

Frau 1. Funke und Frau. A. Trostel sei herzlich fiir die hierzu durchgefiihrien
numerischen Rechnungen gedankt, die teilweise mit der elektronischen Rechenmaschine
G 3 erledigt werden mussten.
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