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INTRODUCTION

As a first orientation or zero order approximation to primary kinetic
isotope effects it is useful to describe the isotope effect in terms of the zero
point energy differences of the isotopic reactant molecules. This over-
simplified picture gives qualitative answers for normal isotope effects.
Significantly, it ignores the entire chemistry and structure of the transition
state. It is just this problem, which is one of the central problems in chemical
kinetics, about which one would like to get some information through the
study of kinetic isotope effects. If isotope effects are to be useful for this
purpose, it then becomes necessary to consider more refined models and
calculations.

The formal theory of kinetic isotope effects within the framework of
transition state theory has already been developed!. Although the full formal
theory is one of simplicity, it is useful to consider various simplifications and
approximations, which may be applicable to the particular problem at
hand. The present paper is concerned with atom transfer or abstraction
reactions of the type

A+BC—+AB+C )

If B is a proton or hydrogen atom and if we are interested in kinetic isotope
effects obtained by substitution of deuterium or tritium at B, then the model
reaction given by equation (1) is a good approximation to the chemical
reaction. This is a consequence of the fact that with respect to hydrogen all
other chemical species have essentially infinite mass. Thus, there is little
coupling between the motions of B and the once removed atoms that make
up A or C. If A andfor C are hydrogen, then there are no atoms once
removed to couple the motion. It is clear that the model reaction given by
(1) neglects the coupling of B with atoms in G by bending vibrations. Thus,
this model for the study of isotope effects is limited to the motion along the
nuclear axis. In general, this is the most important contribution to the
isotope effects, since bending force constants are generally one tenth those of

1 This research has been supported in part by the U.S. Atomic Energy Commission and
the National Science Foundation.
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stretching force constants. This limitation of the present model calculation
must be kept clearly in mind.

ISOTOPE EFFECT AND INTERATOMIC FORCES

Our purpose is to correlate the kinetic isotope effect with the chemical
bonding of the isotopic atom both in the substrates A and BC and in the
transition state. This is most conveniently done by writing the isotope rate
equation (II. 20)t

kilke = (vifve)rt £/t (2)
in the # approximation

. [ h\? 1 1
In k1fks = In (vi¥/vat)L + 24 k_f) (m_li - ;1;) (a1 — ayt) 3)

1
Equation (3) is in essence (II. 30), but removes some of the approximations
in the latter. For simplicity we omit the symmetry number factor from
equation (3). The % method is an adaptation of the results of systems with
not too large quantum effects or small changes in large quantum effects§.
In the last section we shall give the results of our structural analysis in
terms of equation (1). Such an analysis has, in part, also been given by
Westheimer. The conclusions are similar to those which one obtains
more simply and directly by the ¥ method.

To calculate the kinetic isotope effect by the ¥ method we must know
(vi¥/ve!)1, the ratio of the frequencies of crossing the barrier (the imaginary
frequencies) for the isotopic systems; we must know the sine qua non, the change
in the force constant of the isotopic atom between subsirate and transition state; finally
an estimate must be made of 7. The force constants of normal bond stretches
are fairly well known from the literature of molecular spectroscopy. Force
constants are to a good approximation transferable from one molecule to
another. We can assume 4j; to be known in principle. We shall now
develop a method to relate a;;t with the structure of the transition state.

Since we neglect bending vibrations in the reactants, we will be con-
sistent and neglect them in the transition state]. This suggests that we
treat the system

TAB TBC
A--—-B---0C
TAC

in the linear approximation. Associated with the displacements &8ss,

1 Throughout this paper we shall use the notation of Bigeleisen and Wolfsberg without
further definition and shall refer to equations derived by them by equation number, e.g.
(I1.20) is equation (I1.20) on page 23 of reference (1).

§ The expansion given recently by Bigeleisen and Goldstein? for the zero point difference
of a pair of isotopic molecules extends the validity of the ¥ method. Further discussion of the
validity of this powerful method is given in the paper by Wolfsberg and Stern at this Sym-
posium.3,

9 It has been shown by Bell%, that the motion of a proton. between, two fixed centres subject
to a simple Coulomb force leads to the result that the tunnel effect exactly cancels the contri-
bution of the bending vibration, provided these can be described in the first quantum approxi-
mation. Thus the introduction of these corrections in a real system will introduce minor
modifications to the present argument.
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orpe, and &rac are the force constants SaB, fec, and fac. The most
general harmonic potential for the transition state is

2V = faB 0rig + fBC 8r§c + fac ¢ (4)

We choose Z as the internuclear axis and 8ry; is (Z; — Zj), the deviation
of ri; from its equilibrium value. Equation (4) is then

2V = fas(Za — ZB)% + fc(Zs — Z¢)? + fac(Za — Zc)? (5)

which can be written

2V = fas(Za — Zg)2 + foc(Zs — Zc)?2 + fac(Za — Zp + Zp — ZC)Z(G)

Expansion of (Z5, — Zp + Zp — Z)? in equation (6) gives

2V = (fae + fac) (Za — ZB)2 + (fc + fac) (Zs — Z¢)? +
+ 2fac(Za — ZB) (ZB — Zo) ()

which is the form customarily found in the literature. If we designate
rAB as 11 and rpg as rg, the correlation with the conventional notation is

faB + fac =1 (8)
JSBe + fac =, )
Jac = fi2 (10)

Solution of Lagrange’s equations for the motion of the three atom system
ABCGC with the potential energy given by (5) leads to

Ar + AL = (ua + uB) far + (B + r¢) fec + (ra + ©e) fac a1

ArAr, = Mua us po(faBSfee + fBoSfac -+ faBSfac) (12)

where A = 472v2, v is the vibrational frequency, p; = 1/m; and M is
the molecular weight of ABC. The square of the real stretching vibration
is designated as Ay; the motion across the barrier is described by Ar.

The transition state differs from a stable molecule in that A1, << 0. From
equation (12) we arrive at the condition

JasSfee + feefac + fasSfac <O (13)

At least one of the force constants must be negative, or two of them are
zero. It is immediately apparent that transition states close to reactant
will have fpc positive and either fap or fac or both will be negative. For
transition states close to product the converse will holdt. The Cartesian

t This result was obtained some thiry years ago by Eyring and Polanyi through semi-
empirical quantum mechanical calculation of potential energy surfaces. Their surfaces have
the restrictive peculiarity that fac ~ 0.
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force constant along the internuclear axis for the i’th atom in the transition
state is k

ot = (32V[8Zi2)z, 2, (14)

aat = faB + fac (15)
ap* = faB + fBC (16)
act = fac + fac (17)

It now remains to correlate fan, fac, and fac with the structure of the
transition state. For this purpose we shall adopt the simplification that the
barrier is flat near the top$: 7.

SYMMETRICAL TRANSITION STATES

Since the masses of all elements are essentially infinite with respect to
the proton mass, a symmetrical transition state for the case B=H implies
JaB = fec. Thus, the symmetric flat top barrier is one for which

s T 2faBfac =0 (18)
or

Jas = 0; —2fac (19)
From equations (15-17) we find that the solution fap = —2fac leads to a

state which is unstable with respect to the displacement of each of the
atoms A, B, and C. This is not the transition state. The solution
JaB = 0 = fgc describes the transition state. Atoms A and C are bound,
but B moves in a force free field between A and C. For such an atom the
reduced partition functions ratio s/s’ f is unity. A reaction which proceeds
through such a transition state from a given specified reactant will show the
maximum isotope effect. This is true both for the energy and frequency
factors of equation (3).

The ratio (vi*/ve!)1, although indeterminate, 0/0, is finite. We evaluate
it as follows. From equation (11) we have for the case fap = fac = 0

Ar = (A + ) fac (20)

The real stretching vibration involves the motion of A and C. B stands
still in this normal vibration; the frequency of this vibration is independent
of the mass of B. From equation (12)

1 1/2
M sz) 21)

and
, ]Mft meoB y k2 1 1
In (k/ks) =% In (Wm) + 54 (lc—f) (;,;1; - m_zfa) (a8)  (22)
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ASYMMETRIC TRANSITION STATES

We have shown that the symmetric transition state leads to the maximum
isotope effect for atom transfer reactions. We shall now consider the isotope
effects for such reactions in which the transition state is close to reactant and
product respectively.

When the transition state is close to reactant fpc > fas. Thus, agt is
fBc and the bonding on B has not changed appreciably from that in the
reactant, BC. The isotope effect is small and depends upon the amount
the B-C bond is weakened (strengthened) between reactant and transition
state.

In kafka = In (vi¥fve)r + 5 (k’;)z( ! )(aB —fre) (23)

mlB sz

The (wi}/ve})1 consistent with the assumption that fsc > fac is found as
follows:

Ar = (uB + o) fBe + (va + c) fac (24)
Mt 12 /o, 1/2
e

B (Mr" sz)I/Z ((V«ZB + we) fee + (ks + u-c)fAc)l’2 (26)
T \M2 ms (s + we) fee + (La + po) fac

We note {v1¥/ver?) lies in the range 1 — /2.

log ku/kp

(=]

1 i | ! 1 L
-—ay 0 ay —»
Reactant Product
fan=Tuc

Figure 1. Log kH/kD (schematic) as a function of the structure of the transition state for proton
or hydrogen atom transfer reactions
1: (aB)x'eactant = (aB)produet
2: (aB) product > (aB reactant
3:(fas + fac) > (aB)reactant
4: (faB + fBc) > (aB)product > (@B) reactant
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The treatment of reactions for transition states close to the product
follows in an analogous manner. The appropriate relationships are

RNz /1
in (afke) = o (ntfs+ 7 () (o) (00 =) (20)
(M2 map\ V2 ((ua + veB) fa + (24 + po) fac) V2
(vrfvan, = (Mz" mm) ((P-A + wB) faB + (pa + P«c)fAC) (28)

If the product has a very strong force constant, fap, compared to reactant.
ap, and the transition state is close to the product, then inverse isotope
effects may occur. The frequency factor ratio is again in the range 1 - /2.
Inverse isotope effects do not, however, speak unequivocally for transition
states close to the product. We can see that small inverse isotope effects
can occur for transition states close to the reactant if f45 + fsc > ap and if
the temperature-dependent term outweighs the temperature-independent
term. Symmetric transition states are accompanied only by normal,
positive isotope effects. A summary of a number of different possibilities
is shown in Figure 1.

EXACT EQUATIONS

In this section we give the exact equations for the models discussed.
The reduced partition function ratios sfs’ f and s/s’ {1 are respectively

3n —6 v (1 — e )
S/s f _ Vll eduyt/2 (1 — e—u,) (29)
o Bn—7 vt (1 — e-u't)
i fH =" e (30)

For a linear molecule in which we neglect the bending vibrations, the
product in the reactant runs over the n — 1 stretching vibrations along the
internuclear axis. For the transition state the product is over the n — 2
real stretching vibrations. From the product rule for this symmetry class
we have

”}_} VI eeeViee Vel g (M ma')l/z 31)

vileooviteoova *\M' m,

The number of isotopic substitutions is designated by the subscript «.
Inasmuch as the isotope rate equation (2) has (vi!/vs?)1, multiplying the
reduced partition function ratio, this factor, (vi*/ve?)y, can be combined
with the n — 2 frequency ratios in /% to give the product rule ratio along
the internuclear axis. We then obtain the interesting result

n—1 n—2

In (kufks) = 1/2In (%i) +1/2 (z Aus — z Auiz) "

(1—e—m) (1 — emui'h)
+ Z ey 2Py @
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The so-called “pre-exponential or temperature-independent factor”
is the ratio of the square roots of the molecular weights of the reactants
and transition states. This is exactly the same result as that of the equili-
brium isotope effect and is based on the density of states in momentum space?.
It is identically the result which obtains from the collision theory. Thus,
one realizes from this general derivation that, other statements to the
contrary?, there is no distinction between the transition state theory and the
collision theory on this question.

The zero point energy difference in the real vibration, both in the reactant
and transition state, is obtained by putting A1, equal to zero in equation (11).
We thus see that apart from numerical factors, the zero point energy
difference in equation (32) is quite analogous to the force constant shift in
equation (3). The masses of the atoms A and B become of significance in
determining the details of the isotope shift on the molecular vibration and
zero point energy. The Boltzmann excitation terms are opposite in direction
from the temperature-independent term. At high temperatures, the
(M2/M7)1/2 ratio is exactly cancelled by the Boltzmann excitation terms.
For the transition state everything in (Ma!/M;?) is cancelled except the
contribution of vir*/ver?, and thus the high temperature limit for the
temperature independent factor becomes viy}/var?. This old results, 10, 11
brings some recent discoveries 12 on this subject into question.
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