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INTRODUCTION 
As a first orientation or zero order approximation to primary kinetic 

isotope effects it is useful to describe the isotope effect in terms of the zero 
point energy differences of the isotopic reactant molecules. This over­
simplified picture gives qualitative answers for normal isotope effects. 
Significantly, it ignores the entire chemistry and structure of the transition 
state. It isjust this problem, which is one ofthe central problems in chemical 
kinetics, about which one would like to get some information through the 
study of kinetic isotope effects. If isotope effects are to be useful for this 
purpose, it then becomes necessary to consider more refined models and 
calcula tions. 

The formal theory of kinetic isotope effects within the framework of 
transition state theory has already been developed1• Although the full formal 
theory is one of simplicity, it is useful to consider various simplifications and 
approximations, which may be applicable to the particular problern at 
hand. The present paper is concerned with atom transfer or abstraction 
reactions of the type 

A + BC-+AB + C (1) 

If B is a proton or hydrogen atom and if we are interested in kinetic isotope 
effects obtained by substitution of deuterium or tritium at B, then the model 
reaction given by equation (1) is a good approximation to the chemical 
reaction. This is a consequence of the fact that with respect to hydrogen all 
other chemical species have essentially infinite mass. Thus, there is littJe 
coupling between the motions of B and the once removed atoms that make 
up A or C. If A and/or C are hydrogen, then there are no atoms once 
removed to couple the motion. lt is clear that the model reaction given by 
(1) neglects the coupling ofB with atoms in C by bending vibrations. Thus, 
this model for the study of isotope effects is limited to the motion along the 
nuclear axis. In general, this is the most important contribution to the 
isotope effects, since bending force constants are generally one tenth those of 

t This research has been supported in part by the U.S. Atomic Energy Commission and 
the National Science Foundation. 
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stretching force constants. This limitation of the present model calculation 
must be kept clearly in mind. 

ISOTOPE EFFECT AND INTERATOMIC FORCES 
Our purpose is to correlate the kinetic isotope effect with the chemical 

bonding of the isotopic atom both in the substrates A and BC and in the 
transition state. This is most conveniently done by writing the isotope rate 
equation (li. 20)t 

(2) 

in the y a pproxima tion 

y(Ji)22:(1 1) In k1/k2 =In (v1t/v2t)L +- - - -- (au- aut) 
24 kT mu m2i 

(3) 
i 

Equation (3) is in essence (I I. 30), but removes some of the approximations 
in the latter. For simplicity we omit the symmetry number factor from 
equation (3). The y method is an adaptation of the results of systems with 
not too large quantum effects or small changes in large quantum effects§. 
In the last section we shall give the results of our structural analysis in 
terms of equation (1). Such an analysis has, in part, also been given by 
Westheimer4• The conclusions are similar to those which one obtains 
more simply and directly by the y method. 

To calculate the kinetic isotope effect by the y method we must know 
( v1 t / v2t) L, the ratio of the freq uencies of crossing the barrier ( the imaginary 
frequencies) for the isotopic systems; we must know the sine qua non, the change 
in the force constant of the isotopic atom between substrate and transition state; finally 
an estimate must be made of y. The force constants of normal bond stretches 
are fairly weil known from the Iiterature of molecular spectroscopy. Force 
constants are to a good approximation transferable from one molecule to 
another. We can assume aii to be known in principle. We shall now 
develop a method to relate aiit with the structure ofthe transition state. 

Since we neglect bending vibrations in the reactants, we will be con­
sistent and neglect them in the transition state~. This suggests that we 
trea t the system 

TAB TBC 

A B c 
~rAc---+ 

in the linear approximation. Associated with the displacements Ör AB, 

t Throughout this paper we shall use the notation of Bigeleisen and Wolfsberg without 
further definition and shall refer to equations derived by them by equation number, e.g. 
(II.20) is equation (II.20) on page 23 ofreference (1). 

§ The expansion given recently by Bigeleisen and Goldstein 2 for the zero point difference 
of a pair of isotopic molecules extends the validity of the ji method. Further discussion of the 
validity of this powerful method is given in the paper by Wolfsberg and Stern at this Sym-

• 3 posmm .. 
~ I t has been shown by Bell5, that the motion of a proton between two fixed centres subject 

to a simple Coulomb force leads to the result that the tunnel effect exactly cancels the contri­
bution of the bending vibration, provided these can be described in the first quantum approxi­
mation. Thus the introduction of these corrections in a real system will introduce minor 
modifications to the present argument. 
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8rBc, and Sr AC are the force constants /AB, /Be, and /AC· The most 
general harmonic potential for the transition state is 

(4) 

We choose Z as the internuclear axis and Srij is (Zi- Zj), the deviation 
ofnj from its equilibrium value. Equation (4) is then 

which can be written 

Expansion of (ZA- ZB + ZB- Zc) 2 in equation (6) gives 

2V = (/AB +/Ac) (ZA - ZB) 2 + (/Be +/Ac) (ZB - Zc) 2 + 
+ 2fAc(ZA - ZB) (ZB - Zc) (7) 

which is the form customarily found in the literature. lf we designate 
r AB as r1 and rBc as r2, the correlation with the conventional notation is 

]AB +/AC =h 

]Be +!Ac =!2 

/Ac =h2 

(8) 

(9) 

(10) 

Solution of Lagrange's equations for the motion of the three ato!Il system 
ABC with the potential energy given by ( 5) leads to 

where A = 47T2v2, v is the vibrational frequency, [..li = 1/mi and M is 
the molecular weight of ABC. The square of the real stretching vibration 
is designated as Ar; the motion across the barrier is described by AL. 

The transition state differs from a stable molecule in that AL !( 0. From 
equation (12) we arrive at the condition 

(13) 

At least one of the force constants must be negative, or two of them are 
zero. It is immediately apparent that transition states close to reactant 
will havefBc positive and either ]AB or /Ac or both will be negative. For 
transition states close to product the converse will hold t. The Cartesian 

t This result was obtained some thiry years ago by Eyring and Polanyi through semi­
empirical quantum mechanical calculation of potential energy surfaces. Their surfaces have 
the restrictive peculiarity thatfAc ""' 0. 
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force constant along the internuclear axis for the i'th atom in the transition 
state is 

(14) 

(15) 

(16) 

(17) 

It now remains to correlate /AB, /Be, and /Ac with the structure of the 
transition state. Forthis purpose weshall adopt the simplification that the 
barrier is flat near the top6, 7. 

SYMMETRICAL TRANSITION STATES 
Since the masses of all elements are essentially infinite with respect to 

the proton mass, a symmetrical transition state for the case B=H implies 
/AB = /BC· Thus, the symmetric flat top barrier is one for which 

(18) 

or 

/AB = 0; -2/AC (19) 

From equations (15-17) we find that the solution/AB= -2/Ac Ieads to a 
state which is unstable with respect to the displacement of each of the 
atoms A, B, and C. This is not the transition state. The solution 
/AB= 0 = fBc describes the transition state. Atoms A and C are bound, 
but B moves in a force free field between A and C. For such an atom the 
reduced partition functions ratio sfs' f is unity. A reaction which proceeds 
through such a transition state from a given specified reactant will show the 
maximum isotope effect. This is true both for the energy and frequency 
factors of equation (3). 

The ratio (vlt/v2t)L, although indeterminate, 0/0, is finite. We evaluate 
it as follows. From equation (11) we have for the casefAB =/Be= 0 

Ar = (!lA + [lc) !Ac (20) 

The real stretching vibration involves the motion of A and C. B stands 
still in this normal vibration; the frequency of this vibration is independent 
of the mass of B. From equation (12) 

(21} 

and 

(22) 
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ASYMMETRie TRANSITION STATES 

Wehave shown that the symmetric transition state leads to the maximum 
isotope effect for atom transfer reactions. We shall now consider the isotope 
effects for such reactions in which the transition state is close to reactant and 
product respectively. 

When the transition state is close to reactant !Be ~!AB· Thus, aBt is 
!Be and the bonding on B has not changed appreciably from that in the 
reactant, BC. The isotope effect is small and depends upon the amount 
the B-C bond is weakened (strengthened) between -reactant and transition 
state. 

(23) 

The ( 'Jlt/v2t)L consistent with the assumption that !Be ~/Ac is found as 
follows: 

Ar = (!J.B + (J-e) !Be + (!-LA + {J-e) !Ac 

(
Mlt m2B)

112 
(A2r)

112 
(v1t/v2t). L = Mt \ 

2 m1B "lr 

= (Mlt m2B) 112 ((!-'-2B + (J.c)fBc + (!LA+ (J.c)fAc) 112 

M2,.. m1B (fLIB + fJ.c)fBc +(!-LA+ tJ-c)fAc 

We note ( v1 t / v2L t) lies in the range 1 -+ y2. 

-aH 
Reactant 

0 aH--­
Product 

(24) 

(25) 

(26) 

Figure 1. Log kH/kn (schematic) as a function ofthe structure ofthe transition state for proton 
or hydrogen atom transfer reactions 

1 (aB)reactant = (aB)product 
2 (aB) product > (aB)reactant 
3 (fAB +/Be) > (aB)reactant 
4 (/AB +/Be) > (aB)product > (aB) reactant 
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The treatment of reactions for transition states close to the product 
follows in an analogous manner. The appropriate relationships are 

(27) 

(28) 

If the product has a very strong force constant, /AB, compared to reactant. 
aB, and the transition state is close to the product, then inverse isotope 
effects may occur. The frequency factor ratio is again in the range 1 --? y2. 
Inverse isotope effects do not, however, speak unequivocally for transition 
states close to the product. We can see that small inverse isotope effects 
can occur for transition states close to the reactant iff AB +/Be > aB and if 
the temperature-rlependent term outweighs the temperature-independent 
term. Symmetrie transition states are accompanied only by normal, 
positive isotope effects. A summary of a nurober of different possibilities 
is shown in Figure 1. 

EXACT EQUATIONS 
In this section we give the exact equations for the models discussed. 

The reduced partition function ratios sfs' fand sfs' [t are respectively 

I 
'f 3n - 6 Vi .1. +12 (1 - e-ui') 

s s = I1 ---, e u1+ 
vi (1 - e-ui) 

(29) 

s/s' jt = 3n- 7 Vit e.1.uttl2 (1 - e-ui't) 
II v1't (1 - e-utt) (30) 

For a linear molecule in which we neglect the bending vibrations, the 
product in the reactant runs over the n- 1 stretching vibrations along the 
internuclear axis. For the transition state the product is over the n - 2 
real stretching vibrations. From the product rule for this symmetry dass 
we have 

nll VI • •• Vi ••• Vn-1 = J] (M ma.') 112 

VI' ••• Vi' ••• vn' -1 a. M' ma. (31) 

The nurober of isotopic substitutions is designated by the subscript IX. 

Inasmuch as the isotope rate equation (2) has (VI t / v2t) L multiplying the 
reduced partition function ratio, this factor, ( 'JI t / 'J2t) L, can be combined 
with the n- 2 frequency ratios injt to give the product rule ratio along 
the internuclear axis. We then obtain the interesting result 

(32) 
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The so-called "pre-exponential or temperature-independent factor" 
is the ratio of the square roots of the molecular weights of the reactants 
and transition states. This is exactly the same result as that of the equili­
brium isotope effect and is based on the density of states in momentum space8. 
It is identically the result which obtains from the collision theory. Thus, 
one realizes from this general derivation that, other Statements to the 
contrary9, there is no distinction between the transition state theory and the 
collision theory on this question. 

The zero point energy difference in the real vibration, bothin the reactant 
and transition state, is obtained by putting ALequal to zero in equation (11). 
We thus see that apart from numerical factors, the zero point energy 
difference in equation (32) is quite analogous to the force constant shift in 
equation (3). Themasses of the atoms A and B become of significance in 
determining the details of the isotope shift on the molecular vibration and 
zero point energy. The Boltzmann excitation terms are opposite in direction 
from the temperature-independent term. At high temperatures, the 
(M2/M1) 112 ratio is exactly cancelled by the Boltzmann excitation terms. 
For the transition state everything in (M2t/M1t) is cancelled except the 
contribution of VILt/v2Lt, and thus the high temperature Iimit for the 
temperature independent factor becomes v1L't/vzLt· This old result8, 10, 11 

brings some recent discoveries 12 on this subject into question. 
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series of lectures presented at the ETH at Professor Zollinger' s invitation. I am 
indebted to him as well as Professor Lars Melander for their encouragement in the 
publication of this lecture. 
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