Pure Appl. Chem., Vol. 82, No. 7, pp. 1471–1483, 2010. doi:10.1351/PAC-CON-09-09-11 © 2010 IUPAC, Publication date (Web): 4 May 2010

Aerobic oxidation with bifunctional molecular catalysts*

Takao Ikariya[‡], Shigeki Kuwata, and Yoshihito Kayaki

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1-E4-1, Meguro-ku, Tokyo 152-8552, Japan

Abstract: A new series of half-sandwich group 8 and 9 metal complexes bearing a metal/NH bifunctional moiety were synthesized from benzylic amines. The isolable Ir amide complexes serve as effective catalysts for aerobic oxidative transformation of secondary and primary alcohols into the corresponding ketones and esters under mild conditions. The aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional Ir catalysts was found to proceed smoothly under mild conditions with high selectivity. A novel imidobridged dirhodium complex, which may be regarded as a dinuclear variant of the bifunctional mononuclear amide complexes, also proved to promote aerobic oxidation of a secondary alcohol and H₂.

Keywords: aerobic oxidation; alcohol oxidation; bifunctional catalysis; cooperating ligand; H₂ oxidation; molecular catalysts.

INTRODUCTION

Recently, much attention has been given to the design of bifunctional molecular catalysts based on the synergy effect of a Lewis acid and Brønsted base sites working in concert, to attain highly efficient molecular transformation for organic synthesis. We have developed conceptually new transition-metalbased bifunctional molecular catalyst bearing chiral chelating amine ligands for asymmetric reduction and enantioselective C-C and C-N bond formation [1]. This bifunctional molecular catalysis is unique and simple. In fact, the catalytic cycle for the asymmetric reduction includes only two active species, an amido complex and an amine complex with a metal/NH synergetic effect as shown in Scheme 1. During interconversion between both the catalyst and the intermediate, these amido/amine complexes have opposite acid-base properties around M-N bonds and work independently to activate the substrates, and therefore, the catalyst deactivation due to the acid-base neutralization or destructive aggregation can be minimized. This unique concept of the bifunctional transition-metal-based molecular catalysts leads to high reaction rates and excellent stereoselectivies because the reactions proceed through a tight-fitting assembly of the reactants and chiral catalysts. This bifunctional catalyst can also provide a wide substrate scope and applicability in organic synthetic chemistry. Although the forward reaction using hydrogen sources has been investigated as a useful reductive transformation and applied widely to organic synthetic procedures, the reverse reaction with the appropriate hydrogen acceptors, oxidative transformation, has remained unexplored. Herein, we focus on our recent progress in oxidative trans-

^{*}Paper based on a presentation at the 15th International Conference on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-15), 26–31 July 2009, Glasgow, UK. Other presentations are published in this issue, pp. 1353–1568.

[‡]Corresponding author

formation with bifunctional molecular catalysts based on mononuclear ruthenium, rhodium, and iridium complexes as well as newly developed dinuclear complex, bis(imido)-bridged dirhodium(III) complex, and their utilization to aerobic oxidation of alcohols, in which the oxygen molecule works as a suitable hydrogen acceptor.

BIFUNCTIONAL CATALYSIS OF MONONUCLEAR C-N CHELATING AMINE COMPLEXES

Synthesis and reactivities of new Cp*Ir amido and hydrido(amine) complexes bearing C–N chelate ligands

We developed a new series of bifunctional amido- and hydrido(amine)-Ir complexes with C–N chelate amine ligands derived from benzylic amines [2]. The starting neutral chloride complexes, $Cp*IrCl[\kappa^2(N,C)-(NH_2CR_2-2-C_6H_4)]$ (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl; **1a**: $R=C_6H_5$, **1b**: $R=CH_3$), were readily prepared from the reaction of $[Cp*IrCl_2]_2$ and primary benzylic amines $(C_6H_5CR_2NH_2; R=C_6H_5 \text{ and } CH_3)$ in the presence of sodium acetate in CH_2Cl_2 at room temperature. The products were fully characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. Analogous Rh and Ru complexes having C–N chelate ligands were also synthesized in a similar manner to the Cp*Ir complexes. Related cationic C–N chelate metallacycles have been investigated, but catalytically active amido and hydrido(amine) complexes have not been isolated [3].

The cyclometalated amido-Ir complexes, $\operatorname{Cp*Ir}[\kappa^2(N,C)-(\operatorname{NHCR}_2-2-\operatorname{C}_6H_4)]$ (2a: $R=\operatorname{C}_6H_5$, 2b: $R=\operatorname{CH}_3$), were obtained as purple solids in good yields from the reaction of 1 with 1.5 equiv of $\operatorname{KOC}(\operatorname{CH}_3)_3$ in $\operatorname{CH}_2\operatorname{Cl}_2$ at room temperature (Scheme 2). Single-crystal X-ray crystallography of 2a indicates that 2a is a monomeric 16-electron neutral complex with a planar geometry around the metal center bearing $\operatorname{Cp*}$ and a C-N chelate ligand. The amido complex has a relatively short Ir-N bond,

Scheme 2

© 2010, IUPAC

1.903(2) Å, compared with that of the $Ir-NH_2$ bond, 2.137 Å, in the chloro complex **1a**, as observed in analogous amido- and (hydrido)amine-Ru complexes.

The isolable 16-electron amido complexes **2** were found to react readily with 2-propanol at ambient temperature, leading to the 18-electron hydrido(amine) complexes, $Cp*IrH[\kappa^2(N,C)-\{NH_2CR_2-2-C_6H_4\}]$ (**3a**: $R = C_6H_5$, **3b**: $R = CH_3$), as previously observed in Ru- and Ir-Ts-diamine complexes (Scheme 3) [4].

Scheme 3

The hydrido complexes **3** were found to be thermally stable under an Ar atmosphere, and reacted smoothly with acetone in CH₂Cl₂ at room temperature to give 2-propanol. As expected from the stoichiometric reactions, the isolable amido complexes **2** and hydrido(amine) complexes **3** catalyzed the transfer hydrogenation of acetophenone in 2-propanol at room temperature to give 1-phenylethanol in 88–98 % yield after 1 h (Scheme 4). These results indicate that amido-Ir complexes with C–N chelating ligands act as promising bifunctional catalysts for highly efficient transfer hydrogenation.

Scheme 4

Notably, the hydrido(amine)-Ir complexes $\bf 3$ reacted rapidly with molecular oxygen under mild conditions to generate the corresponding amido-Ir complexes $\bf 2$ [5] as shown in Scheme 5. Monitoring a solution of $\bf 3a$ in THF- d_8 under air at room temperature by 1 H NMR spectroscopy showed a rapid decrease in the intensity of a hydride signal at -13.1 ppm and an increase in the characteristic signal due to the N-H moiety of $\bf 2a$ at 8.37 ppm, indicating the smooth conversion to the amido complex by the action of $\bf O_2$. Other oxidants like hydroperoxides also promoted the transformation to $\bf 2a$. The reaction of $\bf 3a$ with an equimolar amount of $\bf H_2O_2$ in THF- $\bf d_8$ for 24 h gave $\bf 2a$ in 95 % yield in addition to a detectable amount of $\bf H_2O$. The O-O bond cleavage of peroxides with the hydrido complex $\bf 3a$ was also clearly demonstrated in the treatment of *tert*-BuOOH, which afforded $\bf 2a$ and *tert*-BuOH. Although the

precise mechanism of the formation of 2a from 3a in the presence of O_2 has remained unclear, these findings as well as recently reported results [6] imply that the reaction of 3a with O_2 may proceed through O_2 insertion into the metal-hydride bond to form an amine-hydroperoxo complex, followed by the release of 2a and O_2 . The O_2 product then reacts with O_2 are provide O_2 and water.

Scheme 5

Aerobic oxidation of secondary and primary alcohols

On the basis of a combination of the reactions shown in Schemes 3 and 5, we successfully developed the aerobic oxidation of alcohols with chiral bifunctional Cp*Ir, Cp*Rh, and (η^6 -arene)Ru catalysts [5,7]. Because the employment of molecular oxygen as a hydrogen acceptor in alcohol oxidation is especially attractive from economical and environmental points of view, a wide variety of homogeneous and heterogeneous systems [8] based on transition metals have been explored; however, limited examples of Rh- and Ir-catalyzed reaction have been reported [6,9,10].

The Ir, Rh, and Ru complexes bearing C–N chelate ligands catalyzed the aerobic dehydrogenative oxidation of 1-phenylethanol under identical conditions (Scheme 6). The reaction of 1-phenylethanol proceeded smoothly under atmospheric pressure of air at 30 °C in THF containing amido-Ir complex 2a with a substrate/catalyst (S/C) ratio of 10 to give acetophenone in 72 % yield after 3 h. The hydrido(amine)-Ir complex with the metal/NH bifunctional unit (3a) also afforded the oxidation product acetophenone, whereas the hydrido complex 3c bearing an *N*,*N*-dimethylamino group did not exhibit catalytic activity under otherwise identical conditions, indicating that the M/NH bifunction is also crucial for O₂ activation and that the aerobic dehydrogenation proceeds through the interconversion between the amine/amido catalyst intermediates. Binary catalyst systems, including the chloro(amine)-Rh and -Ru complexes (4 and 5) and KOC(CH₃)₃, were applicable to the aerobic oxida-

OH
$$CH_3 + O_2$$
 $\frac{cat}{THF}$ $CH_3 + H_2O$ $CH_3 + H_2O$

Scheme 6

a tert-BuOK (1.5 equiv/cat) was added.

tion. Other 1-phenylethanols with substituents on the arene ring, sterically congested diphenylmethanol, and an aliphatic secondary alcohol are convertible into the corresponding ketones by using the amido complex **1a** as shown in Table 1.

Table 1 Aerobic oxidation of secondary alcohols with 2a.a

Entry	Substrate	Product	Yield (%)
1	C ₆ H ₅ CH(OH)CH ₃	C ₆ H ₅ COCH ₃	72
2	4-CH ₃ OC ₆ H ₄ CH(OH)CH ₃	4-CH ₃ OC ₆ H ₄ COCH ₃	62
3	4-ClC ₆ H ₄ CH(OH)CH ₃	4-ClC ₆ H ₄ COCH ₃	55
4	C ₆ H ₅ CH(OH)C ₆ H ₅	$C_6H_5COC_6H_5$	62
5	C ₆ H ₅ CH ₂ CH ₂ CH(OH)CH ₃	$C_6H_5CH_2CH_2COCH_3$	87

 $^{\rm a}$ Reaction conditions: **2a** (0.10 mmol), alcohol (1.0 mmol), THF (1 ml), air (0.1 MPa), 30 °C, 3 h.

The reaction of primary alcohols under identical conditions afforded the oxidative dimerization product, esters [11]. When a mixture of benzyl alcohols containing combined catalyst of the chloro complex 1a with an equimolar amount of $KOC(CH_3)_3$ in THF was stirred under air at 30 °C, the corresponding benzyl benzoate derivatives were obtained in a range of 62–64 % yields (entries 1–3, Table 2). The oxidation of 1,2-benzenedimethanol also afforded phthalide in 72 % yield by an intramolecular esterification (entry 4).

Table 2 Aerobic oxidative esterification of primary alcohols.^a

Entry	Substrate	Product	Time (h)	Yield (%)
1	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CO ₂ CH ₂ C ₆ H ₅	18	64
2	p-ClC ₆ H ₄ CH ₂ OH	p-ClC ₆ H ₄ CO ₂ CH ₂ (p -ClC ₆ H ₄)	3	62
3	p-CH ₃ C ₆ H ₄ CH ₂ OH	p-CH ₃ C ₆ H ₄ CO ₂ CH ₂ (p -CH ₃ C ₆ H ₄)	18	64
4	$1,2-(HOCH_2)_2C_6H_4$	phthalide	3	72

^aReaction conditions: **1a** (0.10 mmol), $KOC(CH_3)_3$ (0.12 mmol), alcohol (1.0 mmol), THF (1 ml), air (0.1 MPa), 30 °C.

To account for the dehydrogenative process with the bifunctional catalysts, a plausible mechanism is shown in Scheme 7. In the presence of O_2 , the oxidation of benzyl alcohol takes place smoothly to give benzaldehyde. Subsequent attack of the remaining alcohol affording the hemiacetal and its ready conversion into the ester is accomplished by the second oxidation.

This aerobic oxidation of alcohols is more appealing when applied to the kinetic resolution of racemic secondary alcohols with chiral amido catalysts (Scheme 8) [12,13]. The efficiency is significantly influenced by the redox properties of the alcohols and the reaction conditions as well as the chiral catalyst performance.

$$\begin{array}{c} OH \\ Ar \end{array} + O_2 \xrightarrow{\text{chiral cat}} OH \\ \hline THF, 30 °C \end{array} \xrightarrow{Ar \overset{OH}{R}} + Ar \overset{O}{} + H_2O \\ \hline \text{chiral cat:} \\ \hline C_6H_5, & \\ \hline C_6H_5 & \\ \hline \end{array}$$

Scheme 8

When a THF (1.0 M) solution of racemic 1-phenylethanol with the chiral Ir complex, **6** derived from (R)-1-naphthylethylamine (S/C = 10) was treated with air at 30 °C for 4 h, (R)-1-phenylethanol was recovered with a 48 % yield and 14 % ee (Scheme 8, Table 3 entry 1). Noticeably, the use of the chiral amido Ir complex bearing an N-sulfonylated 1,2-diphenylethylenediamine (DPEN) ligand, Cp*Ir[(S,S)-Msdpen] (7) (Ms = methanesulfonyl), significantly improved the enantiomer discrimination ability, and (R)-1-phenylethanol was recovered in 44 % yield and 84 % ee with a k_f/k_s ratio of 12.6, although a prolonged reaction time was necessary for completion (entry 2). Further improvement in the stereochemical outcome of the reaction was possible when the reaction was carried out under diluted conditions. The desired R-alcohol with 98 % ee was recovered in 48 % yield, the k_f/k_s value being up to 90 (entry 3). A 1-phenylethanol derivative having an electron-donating CH₃O group at the para position was efficiently resolved with catalyst 7 (entry 4). Similarly, the R-enantiomers with >99 % ee and

with 46–50 % yields were readily obtainable from the reactions of 1-indanol and 1-tetralol at ambient temperature (entries 5 and 6).

Entry	Alcohol	Conc.	Cat.	Time	Unreac	ted alcoho	1
		(M)		(h)	Recovery (%) ^b	ee (%) ^c	$k_{\rm f}/k_{\rm s}$
1	ОН	1.0	6	4	48	14	1.5
	CH₃						
2	~	1.0	7	22	44	84	12.6
3		0.2	7	38	48	98	91.3
4	ОН	0.2	7	19	38	98	17.2
	CH ₃ O CH ₃						
5	QH OH	0.1	7	6	50	>99	>100
6	ρн	0.1	7	6.5	46	>99	77.6

Table 3 Aerobic oxidative kinetic resolution of secondary alcohols.^a

EXTENSION TO DINUCLEAR BIFUNCTIONAL CATALYSTS BEARING METAL-NITROGEN BOND

We next envisioned that the bifunctional effect of the amido complex would also be operative in imidobridged dinuclear half-sandwich complexes with M–N bonds. Exploration into the catalysis of these complexes had been hampered by their various decomposition processes such as imide transfer reactions. However, our recent studies revealed that the electron-withdrawing sulfonyl group stabilizes the imido-bridged dinuclear complexes [14,15], which allows us detailed study of the bifunctional properties of the M–N bond therein. We describe here the reactivities of the imido-bridged dirhodium(III) complex and the application to catalytic aerobic oxidation of H_2 and alcohol [16].

Synthesis and hydrogenation of sulfonylimido-bridged dirhodium(III) complex

The bis(imido)-bridged dirhodium(III) complex $\bf 8a$ was obtained in a similar manner to the iridium analog $[(Cp*Ir)_2(\mu-NTs)_2]$ ($\bf 8b$; $Ts = SO_2C_6H_4CH_3-p)$ [14]. In fact, the reaction of $[Cp*RhCl_2]_2$ with 2 equiv of $TsNH_2$ in the presence of KOH smoothly took place to afford $\bf 8a$ in excellent yield (Scheme 9). The coordinatively unsaturated, yet air- and moisture-stable complex $\bf 8a$ has been characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography.

 $^{^{}a}$ Reaction conditions: The reaction was carried out with a solution of alcohol (1.1 mmol) in THF and an S/C ratio of 10 under air.

^bRecovered starting material; determined by GC, using durene as an internal standard.

^cDetermined by HPLC on a Daicel Chiralcel OD column.

dtert-BuOK (1.5 equiv) was added.

The bis(imido)-bridged dirhodium(III) complex $\bf 8a$ reacted with $\bf H_2$ (1 atm) in $\bf CH_2Cl_2$ for 24 h at room temperature to afford the bis(amido)-bridged dirhodium(II) complex $\bf 9$ in 82 % yield as shown in Scheme 10. The NH signals at 5.46 and 2.53 ppm in the $^1{\rm H}$ NMR spectrum of $\bf 9$ were identified by their exchange with added $\bf D_2O$. An X-ray diffraction analysis of $\bf 9$ -TsNH₂, which has been obtained by recrystallization of $\bf 9$ in the presence of TsNH₂, revealed the presence of intra- and intermolecular hydrogen bonds between the amido protons and the sulfonyl O atoms. The Rh–Rh distance in $\bf 9$ is much shorter than that in $\bf 8a$ (2.6004(12) vs. 2.7992(4) [17] Å) in agreement with the presence of an Rh(II)–Rh(II) single bond. In this reaction, $\bf H_2$ is formally converted into two amido protons and two electrons for the reduction of the dirhodium(III) core in $\bf 8a$. Such $\bf H_2$ oxidation on dinuclear platforms remains quite rare [18].

Scheme 10

The amido complex **9** was also obtained upon treatment of **8a** with an excess of 2-propanol (Scheme 10). The generation of two NH protons associated with two-electron reduction of the metal center is in sharp contrast with the dehydrogenation of primary and secondary alcohols by unsaturated mononuclear amido complexes, which leads to the formation of hydrido—amine complexes without formal reduction of the metal, as described above.

Protonation, hydrogenation, and deprotonation network of amido- and imido-bridged complexes

The rhodium complex **8a** underwent N-protonation with an equimolar amount of triflic acid to give the cationic amido- and imido-bridged dirhodium complex **10** despite the presence of the electron-with-drawing sulfonyl group on the imido nitrogen (Scheme 11). The ¹H NMR spectrum of **10** exhibits an NH signal at 8.46 ppm, while the IR spectrum shows an NH band at 3160 cm⁻¹. The Brønsted acidity of the NH proton in **10** was demonstrated by facile deprotonation with KOH to regenerate the parent bis(imido)-bridged complex **8a** in good yield.

In contrast to the reaction of 8a with H₂, simple heterolysis of H₂ took place when the cationic (amido)(imido)dirhodium(III) complex 10 was treated with H2, giving the (hydrido)bis(amido)dirhodium(III) complex 11 (Scheme 12). 2-Propanol also worked as a hydrogen donor to provide 11. The ¹H NMR spectrum of 11 exhibits a triplet ascribed to the bridging hydrido ligand at -9.20 ppm (${}^{1}J_{RhH} = 23.3$ Hz) as well as two NH singlets at 6.54 and 5.58 ppm, which indicate the anti orientation of the two bridging amido ligands in 11. As expected, reversible protonation of the bis(amido)dirhodium(II) complex 9 provided an alternative route to 11. Since only the amido protons in 11 undergo H–D exchange upon treatment with D₂O, deprotonation of 11 to 9 would occur by the initial loss of the NH proton to give the hydrido-amido-imido complex 12 as a possible intermediate. Subsequent proton transfer from the metal to the Brønsted basic imido nitrogen would afford 9 with formal reduction of Rh(III)₂ to Rh(II)₂. We have recently observed a similar proton migration in the mono(sulfonylimido)-bridged diiridium complex $[Cp*IrCl(\mu-H)(\mu-NMs)IrCp*]$ (Ms = SO₂CH₃), which is triggered by the coordination of carbon monoxide [15]. In accordance with the facile proton shift, hydride addition to 10 with an equimolar amount of LiBH(C₂H₅)₃ also gave the bis(amido) complex 9 immediately. These observations, summarized in Scheme 13, imply that the intermediate 12 may also be generated by the heterolysis of H₂, as well as dehydrogenative oxidation of 2-propanol, on 8a.

Scheme 12

Ts
$$H_2$$
 or 2-propanol H_3 H_4 H_5 H_5 H_6 H_7 H_8 H_8 H_8 H_8 H_9 H_9

The density functional theory (DFT) calculations for the reaction of the mesylimido analog of 8a [(Cp*Rh)₂(μ_2 -NMs)₂] (8a') and H_2 revealed that heterolytic cleavage of H_2 assisted by the sulfonyl O atom (Chart 1, a) is a favorable pathway rather than the direct addition of H_2 to the Rh–N bond (b). Noteworthy is the similarity between the six-membered pericyclic transition state in this pathway and that proposed in related H_2 heterolysis, e.g., by mononuclear amido complexes with a solvent alcohol molecule (Chart 1, c) [19]. The proton relay from the sulfonyl O atom to the imido N atom and the following spontaneous hydride migration in the hydride–amide intermediate 13 highlight the significance of the Brønsted basicity of the two bridging sulfonylimido nitrogen atoms in this transformation.

(a) Ms (b) Ms (c)
$$Rh \delta^{+}$$
 $Ru \delta^{+}$ Ru

Chart 1

Reaction of bis(amido)rhodium(II) complex with O₂

The bis(amido)-bridged dirhodium(II) complex $\bf 9$ rapidly reacted with O_2 to form the bis(imido)-bridged dirhodium(III) complex $\bf 8a$ and water as shown in Scheme 14. Although no intermediate has yet been observed, the oxidation seems to occur via initial insertion of O_2 into the Rh(II)-Rh(II) bond in $\bf 9$ followed by intramolecular proton shift from the amido ligand to the μ -peroxo ligand (Scheme 14). Regeneration of the bis(imido) complex $\bf 8a$ from this hydroperoxo intermediate may be explained by scission of the Rh-OOH bond aided by the NHTs proton to yield H_2O_2 , which reacts with $\bf 9$ to give $\bf 8a$ and $\bf H_2O$, as described above.

$$Cp^*Rh \xrightarrow{N} RhCp^* \xrightarrow{O_2 (1 \text{ atm})} Cp^*Rh \xrightarrow{N} RhCp^* + H_2O$$

$$Ts H \qquad Ts$$

$$9 \qquad 8a, 62\%$$

$$[(Cp^*Rh)_2(NHTs)_2(\mu-O_2)] \longrightarrow [(Cp^*Rh)_2(NHTs)(NTs)(\mu-OOH)]$$

Scheme 14

Catalytic aerobic oxidation of H₂ and alcohol

The facile redox interconversion between $\bf 8a$ and $\bf 9$ (Schemes 10 and 14) could be applied to catalytic aerobic oxidation of $\bf H_2$ and alcohols. When a CD_2Cl_2 solution of $\bf 8a$ was treated with a 1:1 mixture of $\bf H_2$ and $\bf O_2$ (total pressure: 1 atm), water was produced catalytically (Table 4). In the reaction mixture, the sole rhodium species detectable by $^1{\bf H}$ NMR spectroscopy is the bis(imido) complex $\bf 8a$, suggesting that the rate-determining step is the hydrogenation of $\bf 8a$. The turnover number seems limited by consumption of the gases and mass transfer since the rate of the reaction was revived upon addition of $\bf H_2$ and $\bf O_2$ (Fig. 1).

Table 4 Aerobic oxidation of H₂.

		cat	TON ^a
H ₂ + 1/2 O ₂	cat → H ₂ C	8a	9 (26) ^b
	CD ₂ Cl ₂ 30 °C, 60 h	8b	0
		[Cp*Rh	$[Cl_2]_2$ 0

 $^{^{}m a}$ Defined as moles of ${
m H_2O}$ per mole of the catalyst, and determined by $^{
m l}$ H NMR spectroscopy.

bAfter 169 h.

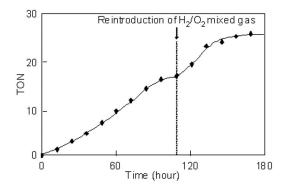


Fig. 1 Time course for the catalytic aerobic oxidation of H_2 with 8a. TON is defined as moles of H_2 O per mole of the catalyst.

Although such H_2 oxidation with O_2 promoted by homogeneous catalysts itself is not directly related to the practical energy production, it may provide some clue to the development of proton-coupled electron-transfer catalysts with high efficiency and reversibility. The aerobic H_2 oxidation shown in Table 4 is achieved by direct interconversion between the imido complex $\bf 8a$ and the amido complex $\bf 9$ without hydrido ligands. Lacking a facile hydrogenation process, the iridium analog $\bf 8b$ and a rhodium complex $[\bf Cp*RhCl_2]_2$ without bridging imido ligands did not catalyze the oxidation at all.

The sulfonylimido-bridged dirhodium complex $\bf 8a$ also catalyzes the aerobic dehydrogenative oxidation of alcohols. Reaction of 2-octanol with O₂ (1 atm) proceeded in the presence of 1 mol % of $\bf 8a$ at 30 °C to give 2-octanone as shown in Table 5. Again, the iridium complex $\bf 8b$ and a rhodium complex [Cp*RhCl₂]₂ without bridging imido ligands did not show any catalytic activity, indicating that the reaction occurs via the imido-amido interconversion shown in Schemes 10 and 14. To the best of our knowledge, $\bf 8a$ represents the first well-defined dinuclear catalyst for this reaction without fragmentation throughout the catalysis.

Table 5 Aerobic oxidation of alcohol.

CONCLUSIONS

We have demonstrated that the C–N chelate complexes facilitate aerobic oxidation of alcohols under mild conditions. The oxidative transformation relies on the facile interconversion between amido and amine complexes with a bifunctional M–N unit. The bifunctional catalysis has been extended to the dinuclear complexes bearing M–N bonds, which also proved to promote the oxidation of H_2 and alcohols using O_2 as a hydrogen acceptor. These reactions provide a novel environmentally benign process with minimal organic waste.

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 18065007, "Chemistry of *Concerto* Catalysis") from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- (a) T. Ikariya, K. Murata, R. Noyori. *Org. Biomol. Chem.* 4, 393 (2006); (b) M. Ito, T. Ikariya. *Chem. Commun.* 5134 (2007); (c) T. Ikariya, A. J. Blacker. *Acc. Chem. Res.* 40, 1300 (2007); (d) T. Ikariya, I. D. Gridnev. *Chem. Rec.* 9, 106 (2009).
- 2. S. Arita, T. Koike, Y. Kayaki, T. Ikariya. Organometallics 27, 2795 (2008).
- (a) J.-B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer. *Org. Lett.* 7, 1247 (2005);
 (b) J.-B. Sortais, N. Pannetier, A. Holuigue, L. Barloy, C. Sirlin, M. Pfeffer, N. Kyritsakas. *Organometallics* 26, 1856 (2007);
 (c) J.-B. Sortais, N. Pannetier, N. Clément, L. Barloy, C. Sirlin, M. Pfeffer, N. Kyritsakas. *Organometallics* 26, 1868 (2007).

^aDetermined by GC.

- (a) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori. *Angew. Chem., Int. Ed. Engl.* 36, 285 (1997);
 (b) K. Murata, T. Ikariya, R. Noyori. *J. Org. Chem.* 64, 2186 (1999).
- 5. S. Arita, T. Koike, Y. Kayaki, T. Ikariya. Angew. Chem., Int. Ed. 47, 2447 (2008).
- 6. Z. M. Heiden, T. B. Rauchfuss. J. Am. Chem. Soc. 129, 14303 (2007).
- 7. S. Arita, T. Koike, Y. Kayaki, T. Ikariya. Chem. Asian J. 3, 1479 (2008).
- 8. (a) T. Matsumoto, M. Ueno, N. Wang, S. Kobayashi. *Chem. Asian J.* **3**, 196 (2008); (b) M. J. Schultz, M. S. Sigman. *Tetrahedron* **62**, 8227 (2006); (c) T. Mallat, A. Baiker. *Chem. Rev.* **104**, 3037 (2004); (d) B.-Z. Zhan, A. Thompson. *Tetrahedron* **60**, 2917 (2004).
- 9. J. Martin, C. Martin, M. Faraj, J.-M. Brégeault. Nouv. J. Chim. 8, 141 (1984).
- 10. A. Gabrielsson, P. van Leeuwen, W. Kaim. Chem. Commun. 4926 (2006).
- 11. N. A. Owston, A. J. Parker, J. M. J. Williams. Chem. Commun. 624 (2008), and refs. cited therein.
- 12. Pd-catalyzed aerobic oxidative kinetic resolution of alcohols: (a) D. R. Jensen, J. S. Pugsley, M. S. Sigman. *J. Am. Chem. Soc.* **123**, 7475 (2001); (b) E. M. Ferreira, B. M. Stoltz. *J. Am. Chem. Soc.* **123**, 7725 (2001); (c) B. M. Stoltz. *Chem. Lett.* **33**, 362 (2004); (d) M. S. Sigman, D. R. Jensen. *Acc. Chem. Res.* **39**, 221 (2006), and refs. cited therein.
- 13. Other examples of the asymmetric aerobic oxidation of alcohols: (a) A. T. Radosevich, C. Musich, F. D. Toste. *J. Am. Chem. Soc.* **127**, 1090 (2005); (b) H. Shimizu, S. Onitsuka, H. Egami, T. Katsuki. *J. Am. Chem. Soc.* **127**, 5396 (2005); (c) Y. Nakamura, H. Egami, K. Matsumoto, T. Uchida, T. Katsuki. *Tetrahedron* **63**, 6383 (2007), and refs. cited therein.
- 14. K. Ishiwata, S. Kuwata, T. Ikariya. Organometallics 25, 5847 (2006).
- 15. H. Arita, K. Ishiwata, S. Kuwata, T. Ikariya. Organometallics 27, 493 (2008).
- 16. K. Ishiwata, S. Kuwata, T. Ikariya. J. Am. Chem. Soc. 131, 5001 (2009).
- 17. C. Tejel, M. A. Ciriano, S. Jiménez, V. Passarelli, J. A. López. Inorg. Chem. 47, 10220 (2008).
- (a) G. J. Kubas. *Chem. Rev.* 107, 4152 (2007); (b) J. C. V. Laurie, L. Duncan, R. C. Haltiwanger, R. T. Weberg, M. Rakowski DuBois. *J. Am. Chem. Soc.* 108, 6234 (1986); (c) T. Matsumoto, B. Kure, S. Ogo. *Chem. Lett.* 37, 970 (2008).
- 19. (a) M. Ito, M. Hirakawa, K. Murata, T. Ikariya. *Organometallics* **20**, 379 (2001); (b) C. Hedberg, K. Källström, P. I. Arvidsson, P. Brandt, P. G. Andersson. *J. Am. Chem. Soc.* **127**, 15083 (2005).