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Abstract: It has been well recognized that cardiovascular diseases are closely related to blood
flow characteristics. Thus, how to predict them accurately enough in an efficient way has been
an important research issue. This paper introduces a 1D spectral element model for the blood
flow in the human arteries with varying cross-sections. The variational approach is used to
formulate the 1D spectral element model. The exact wave solutions to the frequency-domain
governing differential equations are used to determine the frequency-dependent shape func-
tions. The spectral finite element model is then applied to some example arteries to investi-
gate flow characteristics such as blood flow rate and blood pressure through the arteries.
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INTRODUCTION

It has been well recognized that blood flow characteristics determine the wall shear stress and wall ten-
sion which are closely related to cardiovascular diseases such as aneurysm and stenosis. Thus, it has be-
come very important to predict blood flow characteristics accurately in an efficient way for cardiovas-
cular disease research, surgical planning, or medical device design. To this end, during the last decade,
the computational methods have merged as the powerful tools for the modeling and analysis of the
blood flow rate and pressure in arteries.

Modeling of blood flow and pressure has been studied intensively during the last decade, and var-
ious computational models have been reported in the literature [1–10]. The computational models of
blood flow can be classified into the lumped parameters models [1,2], the 1D wave propagation mod-
els [3–6], and the 3D models [7–10]. The 1D models have been widely used because it enables us to
obtain clinically relevant information on local mean blood flow and pressure waves through arterial sys-
tems very efficiently as well as the boundary conditions suitable for 3D models. For solving 1D mod-
els of blood flow, the two-step Lax–Wendroff method [5] and finite element method (FEM) [6–10] have
been applied. To the authors’ best knowledge, however, the spectral element method (SEM) has not
been applied to the modeling and analysis of the blood flow through human arteries.

The FEM is certainly one of most powerful computational methods for solving diverse complex
engineering problems. To formulate the conventional finite element models, the simple polynomials
that are not related to vibration frequency are used as the shape functions. Thus, one may need very fine
meshing in order to improve the FEM solutions, especially at high frequency: this may increase the
computation cost and time significantly. In contrast to the conventional FEM, the SEM is an exact so-
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lution method because the exact wave solutions to the frequency-domain governing differential equa-
tions are used as the frequency-dependent shape functions to formulate the exact dynamic stiffness ma-
trix for a spectral element [11,12]. Thus, the SEM enables us to get very accurate dynamic response of
a 1D structure by representing its regular structure members of any length (without any discontinuity
or irregularity in geometrical and material properties) as one-element models. This can certainly bene-
fit us to drastically reduce the computation cost and time.

As the applications of the SEM to the modeling and analysis of blood flow are very few, this paper
first introduced a spectral element model for the blood flow through a human artery and then applied the
spectral element model to some typical examples to investigate the blood flow characteristics in arteries.

GOVERNING EQUATIONS

1D theory of blood flow

The 1D theory of blood flow has been derived in a general form by Hughes and Lubliner [4], and it con-
sists of a continuity equation, an axial momentum balance equation, and a constitutive equation for the
flow of a Newtonian fluid in a deformable and impermeable, elastic tube. They are given by

Continuity equation:

(1)

Momentum balance equation:

(2)

Constitutive equation:

(3)

where Q(x,t) is the volumetric blood flow rate, P(x,t) is the blood pressure, and S(x,t) is the cross-sec-
tional area of the artery. ρ is the mass density of blood, ν is the kinematic viscosity of blood, E is the
Young’s modulus of the artery, h is the wall thickness of the artery, and Sd(x) = πrd(x)2 is the cross-sec-
tional wetted area where rd(x) is the inner radius of the artery at the diastole pressure Pd. Λ and H are
the parameters determined by the flow velocity profiles across the cross-section and they are given by

(4)

where the boundary layered (BL) flow means that the velocity profile is linear in the boundary layer of
thickness δ and uniform in the core region. An empirical formula for Eh/rd was derided by Olufsen [5]
as 

(5)
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where k1 = 2 × 107 g s–2 cm–1, k2 = –22.53 cm–1, k3 = 8.65 × 105 g s–2 cm–1, and ra is the mean radius
of a tapered artery.

Linearized governing equations

Assume that the cross-sectional area of an artery varies slowly as follows:

Sd(x) = So(1 – θ x)      (θ x < 1) (6)

where So = π ro
2 is the cross-sectional area at the artery inlet and θ is the parameter associated with the

taper of artery. ro is the inner radius at the artery inlet. The solutions of eqs. 1–3 are assumed in the per-
turbed forms as

Q(x, t) = Qd + q(x, t)
P(x, t) = Pd + p(x, t) (7)
S(x, t) = Sd + s(x, t)

where Qd, Pd, and Sd(x) are the blood flow rate, the blood pressure, and the cross-sectional wetted area
at the diastole phase. s(x,t) is the small perturbation with respect to Sd(x) so that s(x, t) < Sd(x). Applying
eq. 7 to eq. 3 yields a relation as

(8)

where ra is the mean inner radius of an artery. By substituting eqs. 7 into eqs. 1 and 2 and using eq. 8,
we can obtain the linearized governing equations as

(9)

(10)

where

(11)

The derivative of eq. 10 with respect to x is given by

(12)

From eq. 9, we get

(13)

By using eq. 13, eq. 12 can be rewritten as

(14)
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SPECTRAL ELEMENT MODELING

The individual arteries between any two neighboring bifurcating points can be represented by 1D spec-
tral element models with specifying physiologically correct boundary conditions at their inlets and out-
lets. The finite spectral element model can be applied to most short arteries such as the aorta and iliac
arteries (i.e., 4~6 cm). For a long artery such as femoral and brachial arteries (i.e., 38~45 cm), the fi-
nite spectral element can be applied to the short upstream part (computational domain) with large cross-
sectional area, while the semi-infinite spectral element to the long downstream part with small cross-
sectional area where the backward propagating blood waves reflected from the downstream end may be
negligible. Thus, both finite and semi-infinite spectral elements are formulated in the following.

Finite spectral element

Governing equations in the frequency-domain
Based on the density functional theory (DFT) theory, we represent p(x,t) and q(x,t) in the spectral forms
as

(15)

where Pn(x) and Qn(x) are the spectral components of p(x,t) and q(x,t), respectively, and P and Q are
defined by

P(x) = {Pn(x); n = 0, 1, 2, …, N – 1}
(16)

Q(x) = {Qn(x); n = 0, 1, 2, …, N – 1}

Substituting eq. 15 into eqs. 9 and eq. 14, we obtain

(17)

(18)

where

(19)

Weak form of governing equations
The weak form of eq. 18 can be derived from 

(20)

where the subscripts n are omitted for the brevity.
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By applying the integral by parts, we can obtain

(21)

Applying eq. 13 to eq. 10 yields

(22)

By using eq. 15, eq. 22 can be transformed in the frequency-domain as

(23)

or

(24)

where

(25)

and 

(26)

By substituting eq. 24 into the first term in the right-hand side of eq. 21a, we obtain

(27)

Finally, by replacing the first term of eq. 20 with eq. 27, we can obtain the weak form in the frequency-
domain as

(28)
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where

(29)

Spectral nodal degrees-of-freedom (DOFs)
Consider a finite artery element of length L and assume that x = 0 and x = L denote the upstream end
and downstream end of the artery element, respectively. Then we define the spectral nodal DOFs vec-
tors for the blood flow rate and pressure as follows:

(30) 

(31)

Dynamic shape functions
To derive the frequency-dependent dynamic shape functions, we assume the general solution of eq. 18
as

(32)

where kn is the wave number. Substituting eq. 32 into eq. 18, we get a dispersion relation 

(33)

From eq. 33, we can obtain two wavenumbers as

(34)

If the artery is uniform (θ = 0) and the blood is non-viscid (ν = 0), kn1 represents a wave mode which
travels in the +x direction without attenuation (forward propagating wave) while kn2 a wave mode which
travels in the –x direction without attenuation (backward propagating wave). However, as the arteries
are not uniform (θ ≠ 0) and the bloods are viscid (ν ≠ 0) in real situations, both wavenumbers kn1 and
kn2 will be complex with imaginary values. This means that kn1 and kn2 represent the wave modes which
attenuate as they travel in the +x and –x directions, respectively.

By using the wavenumbers, the general solution of eq. 18 can be written as

(35)

where

(36)
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and

(37)

By applying eq. 35 to the right-hand side of eq. 30, we can obtain

(38)

where

(39)

By using eq. 38, the constant vector a can be removed from eq. 35 to obtain

(40)

where Nn(x; ωn) is the dynamic shape function defined by

(41)

where

(42)

Spectral element equation
By using the spectral nodal DOFs defined by eqs. 30 and 31, the weak form of eq. 28 can be rewritten
as

(43)

where

(44)

The weak form of eq. 17 can be written as

(45)

From the linear homogenous wave equation for Qn(x), which has the same form as eq. 18, we can de-
rive

(46)
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By substituting eqs. 40 and 46 into eq. 45, we can obtain a complementary equation as

(47)

where

(48)

with

(49)

Substituting eq. 40 into eq. 43 and applying eq. 47 to the first term in the right-hand side of eq.
43 yields

(50)

where

(51)

Since δPn is the arbitrary variation of Pn, we obtain from eq. 50 

(52)

where

(53)

By substituting the dynamic shape function eq. 41 into eq. 53 and taking integration, we obtain
the spectral element matrix as

(54)

where

(55)
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with

(56)

Semi-infinite spectral element

To formulate the spectral element for a semi-infinite blood flow element, we start again from eqs. 9 and
10. The governing equations are represented in the spectral forms as

(57)

(58)

From eqs. 57 and 58, we can obtain the wave equation for Qn(x; ) as

(59)

where b1n and b2n are defined by eq. 19. Assume the general solution of eq. 59 as

(60)

Substituting eq. 60 into eq. 59 yields a dispersion relation as

(61)

As eq. 59 for Qn(x) has the exactly same form as eq. 18 for Pn(x), we get an dispersion relation (eq. 61)
that is identical to eq. 33. Accordingly, we also obtain two identical wavenumbers kn1 and kn2 given by
eq. 34. The wavenumber kn1 corresponds to the wave which is propagating in the +x direction (the for-
ward-propagating wave mode), while the wavenumber kn1 corresponds to the wave which is propagat-
ing in the –x direction (the backward-propagating wave mode).

For the blood flow through a very long blood vessel, we may assume that the blood wave propa-
gates forward only so that the backward-propagating waves reflected from the far downstream can be
neglected. This approximation may lead to a nonresonant single-node semi-infinite spectral element.
Thus, we represent the blood flow rate as

(62)

The spectral nodal DOFs at the upstream end (inlet) of a semi-infinite blood vessel element are defined
by

(63)

By using the first relation of eq. 63, eq. 62 can be written as

(64)
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Substituting eq. 64 into the continuity eq. 57, we obtain

(65)

Lastly, applying the second relation of eq. 63 to eq. 65, we obtain the semi-infinite spectral element
equation as 

(66)

where 

(67)

ASSEMBLY OF SPECTRAL ELEMENTS

The spectral elements can be assembled in the same way as used in the conventional FEM. The assem-
bling is straightforward for straight blood vessels. Thus, the assembly process will be illustrated for the
case of a binary branch which consists of a parent vessel (denoted by “p”) and two daughter vessels (de-
noted by “d1” and “d2”) as shown in Fig. 1.

At the bifurcation point “J”, the following bifurcation conditions must be satisfied.

(68)

(69)
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Fig. 1 A binary branch vessel.



The spectral element equations for the parent vessel and two daughter vessels are given by

(70)

where the nonlinear pseudo forces are omitted for brevity. By using the bifurcation conditions (eq. 68)
and (eq. 69), three spectral element equations (eq. 58) can be readily assembled in the form as

(71)

NUMERICAL EXAMPLES AND DISCUSSION

The spectral element model developed in this paper is applied to a blood vessel as shown in Fig. 2,
where the inlet radius is r0 = 1.25 cm and the taper is θ = 0.018 for the short upstream part (10 cm) and
θ = 0 for the long downstream part (2490 cm). The long uniform downstream part is attached to the
short tapered upstream part to resemble Aorta and the rest downstream part connected to Aorta. The
blood properties are given by ρ = 1.055 g/cm3 and ν = 0.046 cm2/s. The blood flow rate and pressure
are computed by assuming that the pulsatile blood flow rate at the upstream inlet (x = 0 cm) and the
pulsatile blood pressure at the downstream outlet are given by Fig. 3.
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Fig. 2 An example blood vessel.



First, to evaluate the high accuracy of the present spectral element model, the blood flow rate and
pressure predicted by using the present spectral element model are compared with those predicted by
using the finite element model formulated in this study. The velocity profile of the blood flow is as-
sumed to be parabolic. Figure 4 shows the predictions at x = 3.5 cm. For the SEM results, only two spec-
tral elements are used: one element for the short tapered upstream part and one element for the rest long
uniform downstream part. For the FEM results, the short tapered upstream part is represented by total
10 equal-length elements and the rest long uniform downstream part is represented by total 10, 40, 90,
or 190 equal-length elements. The Runge–Kutta algorithm is applied to compute the FEM results, with
using the time-step size of 0.01 s which is confirmed to provide sufficiently converged reliable solu-
tions. Figure 4 certainly shows that FEM results converge to the SEM results as the number of finite el-
ements used in FEM is increased. Figure 4 also shows that, as the blood flow specified at the inlet and
outlet boundaries is pulsatile, the blood flow predicted at x = 5 cm is also pulsatile as expected. The
blood flow rates and pressures at three different locations are compared in Fig. 5. Figure 5 shows the
slight time delays of the blood flow waves depending on the measurement locations.
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Fig. 3 Inlet and outlet boundary conditions of the blood flow.

Fig. 4 Comparison of the blood flow rates and pressures obtained by SEM and FEM.



The blood flow characteristics in a blood vessel will depend on the velocity profile which is de-
termined by the blood properties (i.e., viscosity, density, etc.) and the geometric and material properties
of the blood vessel. Thus, we consider three types of velocity profile: the uniform flow, the parabolic
flow, and the BL flow. The blood flow rates and pressures predicted at x = 5 cm for each velocity pro-
file are compared in Fig. 6. For the BL flow, 5 % BL thickness is assumed. Figure 6 shows that the uni-
form flow has the largest blood flow rate while the BL flow has the lowest value.

In this study, the nonlinear blood flow theory is linearized by neglecting small nonlinear terms
from eq. 14. By taking into account the neglected nonlinear terms as the nonlinear pseudo-forces, the
spectral element analysis can be also conducted by using the present spectral element model. To eval-
uate the effect of the nonlinear terms, the blood flow rates and pressures predicted by using the linear
and nonlinear spectral element analyses are compared in Fig. 7. It is shown that the linear spectral ele-
ment analysis is good enough for the example problem considered in this study.

© 2010, IUPAC Pure Appl. Chem., Vol. 82, No. 1, pp. 321–337, 2010

Spectral element analysis of blood flow 333

Fig. 5 Blood flow rates and pressures at various locations.



As the second example, we consider the artery system that consists of the subclavian, vertebral
artery, and brachial artery as shown in Fig. 8. The geometric data of the artery system is available from
ref. [14]. The semi-infinite spectral elements are used to represent the non-reflecting boundary condi-
tions at the downstream ends of the vertebral artery and brachial artery. Figure 9 shows the blood flow
rates and pressures predicted at the 2 cm distance from the inlet of subclavian (location A), at the 5 cm
distance from the junction J of the vertebral artery (location B), and at the 20 cm distance from the junc-
tion J of the brachial artery (location C). As expected, the blood flow rate at B is shown to be smaller
than the value at C, while the blood pressures are almost same at three locations. 
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Fig. 7 Comparison of the linear and nonlinear blood flow models.

Fig. 6 Blood flow rate and pressure vs. blood flow velocity profile. 



CONCLUSIONS

In this paper, a 1D spectral element model for the blood flows in the human arteries with varying cross-
sections is developed by using the variational approach. By suing the exact wave solutions to the fre-
quency-domain governing differential equations as the frequency-dependent shape functions, both the
finite spectral element and the semi-infinite spectral element are formulated. Through some numeral
simulations, it is shown that the present spectral element model provides very accurate and reliable so-
lutions, with using only a small number of elements, when compared with the conventional finite ele-
ment model. 
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Fig. 8 Artery system considered as the second example.

Fig. 9 Blood flow rates and pressures at location A, B, and C.



APPENDIX: FINITE ELEMENT MODEL

The weak form of the time-domain governing eq. 14 is obtained from

(A1)

By applying the integral by parts and using eqs. 13 and 22, we obtain the weak form as

(A2)

For the three-node element, the blood flow rate and pressure are assumed by

(A3)

where

(A4)

and

(A5)

The weak form of eq. 9 is written as

(A6)

Substitution of eq. A3 into eq. A6 yields a complementary relation as

(A7)

where

(A8)

By substituting eq. A3 into eq. A2 and using the complementary relation (A7), we obtain the fi-
nite element equation in the form as

(A9)
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where

(A9)

and

(A10)

with

(A111)
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