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Systemic functional linguistics (SFL) is a functionally oriented linguistic framework that
has gained increasing influence in recent years, with important applications in the
description and analysis of text/discourse. Despite its popularity, relatively little has
been done to automate the parsing of functional structures using this framework.
Previous attempts have largely depended on non-statistical, rule-based methods, which
have limited their application in more complex scenarios. In this article, we present a
data-driven method for the classification and labelling of SFL-based functional roles,
trained on a recently developed corpus resource. We describe our efforts to engineer
lexical, semantic and contextual features in constructing a system for labelling the
process types and participant roles in the transitivity system based on the SFL frame-
work. Initial evaluation shows accuracies of 80.5% and 91.8% for the classification of
process types and participant roles, respectively. The system is expected to be an
important step in achieving fully automated analysis of functional roles in SFL. In
addition to applications requiring analysis of English functional structure, we discuss
some of the difficulties and future directions in extending the current system to handle
less other languages such as Chinese.
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1. Introduction

Recent years have seen data-driven approaches to natural language processing successfully
applied to a wide range of problems including syntactic (Collins 2003; Klein and Manning
2003), semantic (Gildea and Jurafsky 2002; Pradhan et al. 2004) and discourse (Soricut and
Marcu 2003; Hernault, Prendinger, and Ishizuka 2010) analysis. Computational processing of
linguistic data for functional analysis using functionally oriented frameworks such as systemic
functional linguistics (SFL) (Halliday and Matthiessen 2004), on the other hand, remains a
relatively under-explored research area. The functional approach to the description and
analysis of the various aspects of language (including structure, meaning and use) has gained
increasing influence and adoption as an alternative to formalist theories (Huang 2002).
Linguistic analysis using functional theories is still largely manual, and the lack of relevant
resources has limited progress in automating the often time- and effort-consuming process.
In this article, I present work being carried out to automate parts of the functional
structure using a recently constructed corpus annotated within the framework of SFL (Yan
and Webster 2013). Specifically, I focus on the assignment of functional labels in the
transitivity system, a core system within SFL which is known to be particularly difficult to
process using purely rule-based approaches (Honnibal and Curran 2007). Trained on
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lexical, syntactic and contextual features obtained from the corpus, automatic procedures
are employed to automatically identify and classify the process types as well as accom-
panying participant roles in unrestricted texts. The proposed system will significantly
enhance the potential for applying the SFL framework to the task of automating large-
scale text analysis. Finally, I discuss some of the difficulties and future directions,
proposing methods such as active learning and annotation projection and extending the
current system to handle other languages such as Chinese.

2. Related works

Recent work (Costetchi 2013a, 2013b) has been carried out to automatically generate
simplified SFL transitivity parses for unrestricted sentences. Semantic role labelling is
performed using a dependency graph-based method and a pattern matching method,
resulting in reported accuracy of 72.65% on simple sentences. Although this approach
shows respectable results, the current implementation is still largely dependent on hand-
crafted patterns that limit its application to more complex, unrestricted texts.

To address the bottlenecks of current state-of-the-art functionally based parsers, a
small-scale corpus (Yan and Webster 2013) has recently been annotated with SFL func-
tional roles. The annotation of the corpus was done in four successive layers:

Clausal: clausal boundaries, including boundaries of embedded clauses. The clause
boundaries are aligned with the RST Treebank where clausal boundaries are also
annotated.

Process: processes are the core of a clause, typically realized by a verbal group
headed by the root verb of the clause. As described in Halliday (1994), there are
6 common types of processes (material, behavioural, mental, verbal, relational and
existential), subdivided into 10 more refined types (with material subdivided into
doing, happening, mental into perception, cognition, affection and relational into
attributive, identifying). Each of the process types is associated with a set of nuclear
and non-nuclear participants.

Participant: participants are the central nominal groups of the clause typically
realized by the grammatical Subject or Object of the clause. A summary of the
processes with its related participants is shown in Table 1.

Circumstance: peripheral units related to time, place, manner, etc. typically realized
by adverbial groups. There are in total nine broad types of circumstances: Extent,
Location, Manner, Cause, Contingency, Accompaniment, Role, Matter and Angle,
each with its own subtypes. The Extent circumstance, for example, is subdivided
into three subtypes: duration, frequency and distance.

Table 1. A summary of the process types and participants in the transitivity system.

Process type Nuclear participants Example

Material Actor, Goal Sheor made the coffeegya

Mental Senser, Phenomenon Shegenser $aW the carphenomenon
Attributive Carrier, Attribute Maggiecarrier Was StrONgaribute
Identifying Identified, Identifier Maggieigentifiea Was our leaderygengifier
Behavioural Behaver, (Target) Shegenaver laughed

Verbal Sayer, (Target) She replied

Existential Existent There was a beautiful princessgyistent
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In total, 81 documents from the Wall Street Journal section of the Penn Treebank have
been annotated, with a total of 43,351 words, divided into 1621 sentences and 4620
clauses. The corpus, though still relatively small-scale, serves as the basis for further
statistical modelling and supervised training in our proposed system. In the following
sections, I describe the procedure for constructing such a data-driven system.

3. Classification

The focus of this article is on the system constructed for labelling functional roles in the
transitivity system (Table 1). In an SFL-based analysis, three strands of meaning (called
metafunctions) operate concurrently: the ideational (experiential and logical), interperso-
nal (social interaction) and textual (communicative organization) metafunctions. The
transitivity system is a major system in the ideational system. Specifically, it involves a
configuration of processes and participants involved (such as Actor, Goal) and the
accompanying circumstances (such as time, place, manner). The task of labelling transi-
tivity roles is divided into two steps: (1) clause boundary identification and (2) transitivity
role classification.

Clause boundary identification includes the task of dividing texts and sentences into
clauses, or Elementary Discourse Units (EDU). Identification of clause boundaries is
usually the first step in a functional analysis. Although considered a kind of lower-level
segmentation, clause boundary identification is crucial to the quality of further discourse
parsing. Recent advances in discourse parsing (HILDA) have yielded good results in
clause segmentation, achieving an F-score of 93.8%, or 96% of the human performance
level (Hernault, Prendinger, and Ishizuka 2010). Our role labelling system uses the state-
of-the-art discourse segmenter provided by the HILDA parser for clause boundary
identification.

On the other hand, the second step of classifying transitivity roles is less well
developed. We may approach the problem first as one of disambiguating the different
senses of the process as realized by a verb, and second as a Semantic Role Labelling
problem whereby the participant roles associated with the process are identified.
Transitivity analysis begins with identifying the process and process type in the clause.
For example, in the clause John hit the ball, when the type of the process Ait is identified
as material, the related participant roles of John and the ball can be inferred from their
grammatical functions (John being the grammatical Subject and the ball being the
grammatical Object) in the clause. The step may be divided into two subtasks: (1)
classification of the process type and (2) identification of the participant roles based on
the identified process type.

3.1 Process types

Grammatically, the process is a verbal group with the verb as its core. We can simplify the
task by reducing it to disambiguating the sense of the core verb. For an arbitrary input
sentence, we first segment it into clauses using the technique used by a clause boundary
identifier as described in Hernault, Prendinger, and Ishizuka (2010). Features from each
clause and its contexts are then extracted for classification.

3.1.1 Features
We employ a combination of lexical, syntactic and semantic features as shown in Table 2.
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Table 2. The features used in classification of process types and the
scope that these features are extracted.

Features Scope
Root verb in the clause Clause
Subject (if any) of the root Sentence
Object (if any) of the root Sentence
Lemmatized form of the root verb Lexicon
WordNet lexical name of the process and participants External

disambiguated by sense disambiguation systems

3.1.2 Syntactic features

An input text is first segmented into individual sentences using a sentence segmenter
(Bird 2009). For every sentence, we obtain the Stanford Typed Dependencies (STD)
from the Stanford Parser (Klein and Manning 2003; De Marneffe, Maccartney, and
Manning 2006) and extract the root verb of each clause and the corresponding
syntactic Subjects and Objects (typically also serving as functional participant roles
in the clause).

The STD is a binary representation of the relations among words in a parsed
sentence. It retains basically the same syntactic information as a phrase structure
parse, but provides a straightforward format that makes it easier to extract dependency
relationships. Each dependency relation in the STD is represented by a triplet of (1) the
relation, (2) the governor (or regent/head) and (3) the dependent. The current represen-
tation includes 53 relations organized hierarchically. For example, the STD for the
sentence The Court’s decision will have billion-dollar consequences for manufacturers
is as follows:

det (Court-2, The-1)

poss (decision-4, Court-2)

nsubj (have-6, decision-4)

aux (have-6, will-5)

dobj (have-6, consequences-38)

amod (consequences-8, billion-dollar-7)
prep_ for (consequences-8, manufacturers-10)

Each line represents a binary dependency relation between two words. The first
symbol (e.g. det) is the name of the relation, followed in the bracket by the governor
(e.g. Court-2, 2 being the index) and the dependent (e.g. The-1).

The dependency structure of a sentence allows us to extract syntactic features
available in the sentential parse. For example, in the example sentence above, it is
straightforward to identify the verb have as the root of the sentence. The root have has
three direct dependents: decision, will and consequences. For the dependency relations
of the direct dependents (nsubj, aux, dobj) with the root verb, we deduce their
grammatical roles in the sentence: Subject, Auxiliary and Object. Each of the direct
dependents of the root can have its own dependent. For example, the noun decision is
a governor of the noun Court, which in turn governs the determiner The. Using the
STD makes it straightforward to extract features both at the sentence and lexical
levels.
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3.1.3 Feature extraction

In the following, we consider the feature building process with an example sentence:

If that controversy continues, // other foreign producers are likely // to grab most of
the sales in Eastern Europe.

The sentence is a complex sentence that can be divided into three clauses as follows
(each clause separated by //). The identification of clause boundaries is done with the
clause segmenter as described in Hernault, Prendinger, and Ishizuka (2010).

To build the features, we first obtain the parsed STD from the Stanford Parser:

mark (continues-4, If-1)

det (controversy-3, that-2)
nsubj (continues-4, controversy-3)
advcl (are-9, continues-4)
amod (producers-8, other-6)
amod (producers-8, foreign-7)
nsubj (are-9, producers-8)
root (ROOT-0, are-9)

acomp (are-9, likely-10)

aux (grab-12, to-11)

xcomp (1ikely-10, grab-12)
dobj (grab-12, most-13)

det (sales-16, the-15)
prep of (most-13, sales-16)
nn (Europe-19, Eastern-18)
prep in(sales-16, Europe-19)

In this example, we first identify the root of the sentence (are). The process in each of
the clauses is the verbal group dependent on and having the shortest distance from the root
of the sentence. For example, the verb continues in the first clause is directly dependent on
the root verb are and thus has a dependency distance of 1, the shortest of all the words in
the clause. The root verb is then lemmatized to its base form using the WordNet Lemmatizer
(Bird 2009). For example, the plural copula are is lemmatized to be (Tables 3 and 4).

The nominal groups realizing the grammatical roles of Subject and Object in each
clause are then derived from the STD. The STD provides basic semantic role labelling

Table 3. Process information related to the example clause.

Clause Process Lemmatized process (event) Distance from root
If that controversy continues, continues  continue 1
other foreign producers are likely are be
to grab most of the sales in Eastern grab grab 1
Europe.

Table 4. Verbal group structure for “has not been eating”.

has not been eating

Finite Polarity Auxiliary Event
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deduced from the parsed syntactic structure of a sentence, indicated by their relations with
the verb, allowing us to identify the Subject (or Agent if the clause is in the passive
voice), the Direct Object and the Indirect Object in a clause. In most cases, the Subject
and Object of a process are within the same clause. It is worth noting, however, that
sometimes the Subject and Object are absent from the clause and can only be deduced at
the sentential level. In the third clause of the above example, the Object of the third clause
is identified as most of the sales in Eastern Europe, but the Subject of the verb grab is
missing from the clause itself. We deduce from the dependency chain that the first
participant for the process grab is also producers. The nil placeholder is used to indicate
cases where the Subject/Object is not found either in the clause or in the sentence
(Table 5).

Identifying the grammatical roles associated with the process provides useful informa-
tion about the participants. The presence or absence of the Object informs as to whether
the process/verb is being used transitively or intransitively. The other lexical semantic
properties of the grammatical roles can also be useful in distinguishing the various types
of processes. Apart from syntactic features, we also consider external resources that may
be useful in helping to distinguish process types, such as WordNet (Miller 1995). In
WordNet, words are grouped into cognitive synonyms called synsets. The synsets in
WordNet are organized into 45 lexicographer files that divide words (mainly nouns and
verbs) into semantic categories (Table 6).

There is an interesting correspondence between the WordNet lexicographer categories
and the process types in SFL. For example, the categories verb.cognition, verb.emotion
and verb.perception correspond to the mental process types of cognition, affection and

Table 5. Grammatical role features for the example clauses.

Clause Process Subject Direct Object Indirect Object
1 continues controversy nil nil

are producers likely nil
3 grab producers sales nil

Table 6. WordNet’s lexicographer categories for verbs.

Lexicographer file name Meaning

verb.body verbs of grooming, dressing and bodily care
verb.change verbs of size, temperature change, intensifying, etc.
verb.cognition verbs of thinking, judging, analysing, doubting
verb.communication verbs of telling, asking, ordering, singing
verb.competition verbs of fighting, athletic activities
verb.consumption verbs of eating and drinking

verb.contact verbs of touching, hitting, tying, digging
verb.creation verbs of sewing, baking, painting, performing
verb.emotion verbs of feeling

verb.motion verbs of walking, flying, swimming
verb.perception verbs of seeing, hearing, feeling

verb.possession verbs of buying, selling, owning

verb.social verbs of political and social activities and events
verb.stative verbs of being, having, spatial relations

verb.weather verbs of raining, snowing, thawing, thundering
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perception. Categories such as verb.possession and verb.stative correspond to relational
processes of attribution and identification. Other categories such as verb.body or verb.
competition are less directly correlated, but may roughly correspond to certain process
types. On the basis of such correspondences, we discover valuable clues for the classifica-
tion of process types.

Since a given word may belong to more than one category, determining the categories
in context requires us to disambiguate the senses of the word. To do this, we take
advantage of existing state-of-the-art methods for Word Sense Disambiguation (WSD).
Agirre and Soroa (2009) and Agirre, De Lacalle, and Soroa (2013) present a graph-based
method (UKB) that uses a Lexical Knowledge Base to perform unsupervised WSD which
has achieved performance comparable to state-of-the-art supervised techniques. We use
UKB to perform a WSD task whereby we determine the sense of the content words in a
sentence as well as the lexicographer categories as indicated in the WordNet database. For
each process and grammatical role in a clause, we determine its lexicography category in
WordNet. To do this, we feed the process and its context (content words in the same
clause as the process) in the sentence into UKB to be disambiguated. Once the word sense
as represented by a WordNet synset is disambiguated, we look up the lexicography
category in WordNet. The result for the example sentence is shown as follows (Table 7):

As indicated by the criteria for distinguishing process types as described in Halliday
(1994), the nature of participants (whether they are an unconscious thing, or a conscious
thing or a fact) may help distinguish the type of the process. These lexicographer
categories provide such useful information as whether a participant is an animate entity,
a person, a social group (a group of persons) or a fact. In the example above, UKB
correctly identifies the category for producer as noun.person.

3.2 Participants

The configurations of process types and their participants are relatively fixed. The choice
of process types in the system comes with a set of participant roles that are typically
involved in the process. For example, a verbal clause is characterized by a configuration
of Process (obligatory) + Sayer (obligatory) + Verbiage (optional) + Receiver (optional).
In the previous section, we used a number of features to predict the type of the process.
Given the process type, and the potential configurations of participant roles involved in
the process, we should be able to predict the participant roles in the clause.

Participants in SFL are typically realized structurally by nominal groups. By identify-
ing the nominal groups in a clause, we can also identify candidates for being assigned
participant roles. However, not all nominal groups have participant roles. Functionally,

Table 7. Lexical information for functional constituents in the example clauses.

Number of UKB-disambiguated WordNet WN lexicographer category for

Lemma WordNet senses synset Lemma
continue 10 continue.v.01 verb.stative

be 13 be.v.01 verb.stative

grab 6 catch.v.04 verb.contact
controversy 1 controversy.n.01 noun.communication
producer 3 manufacturer.n.02 noun.person

sales 5 sale.n.03 noun.act
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only those that are centrally involved with the process are considered participants. For
example, in the clause / had a dream last night, I and a dream are centrally involved with
the process had, and are therefore participants, while last night serves as the more
peripheral circumstance. Syntactically speaking, a nominal group has to both be directly
dependent on the process (realized as the root verb of the clause) and also form certain
types of dependency relations with the process to be considered a participant.

There are a few problems to consider for the configuration of participant roles. The first
is the grammatical roles the participants serve in a clause. In traditional grammar, these roles
are referred to as the Subject and Object. In SFL, they are functional constituents called
Subject and Complement in the Mood System. In SFL, Subject and Complements are
typically identified using certain grammatical tests such as the tag set and plurality test
(Eggins 2004), which allude to humans’ inherent linguistic knowledge and are difficult to
perform computationally. Instead, we take advantage of syntactic relations obtained from
syntactic parsers. Table 8 shows some STD relations that can be used to infer the gramma-
tical relations among the participants such as whether the nominal is a Subject (e.g. nsubj) or
Object (e.g. dobj, iobj). By using such syntactic information, we can identify the gramma-
tical roles (Subject, Direct Object and Indirect Object) of a clause. The second problem is
identifying the semantic roles of the nominal group in the Subject or Object positions. In an
active clause like the car hit the wall, the Subject of the clause (the car) is conflated with the
Agent/Actor of the clause. In a passive clause, however, the Subject is conflated with the
Patient/Goal of the clause. In typed dependencies, a distinction is also made in passive
clauses between the passive Subject (i.e. nsubjpass, csubjpass) and the real Agent, typically
in a prepositional phrase headed by the preposition by. In certain cases, clauses with verbs
like give may have more than one Object, as in He gave a pen (Direct Object) to her
(Indirect Object). Again information about both types of Objects is available from the
syntactic parses rendered as typed dependencies. Such syntactic information and the process
type of the clause allow for the extraction of features to construct another classifier for the
participant roles in the clause. We determine the participant roles of each of the present
Subject/Object using the features in Table 9.

For example, the following features are extracted for the example sentence Campeau
operates department store chains and is strained for cash. (Table 10):

The process type is obtainable from the earlier classifier that we have built for process
type classification. It is worth noting that although the number of participant roles present

Table 8. Common types of dependency relations of arguments that can serve as the
Subjects or Complements of a clause.

Dependency relation Grammatical Role/example
with the root Meaning participant role
nsubj Nominal Subject Subject/Actor

csubj Clausal Subject Subject/Actor
nsubpass Passive Nominal Subject Subject/Actor
csubjpass Passive Clausal Subject Subject/Goal

agent Agent Object/Goal

dobj Direct Object Object/Goal

iobj Indirect Object Object/Recipient
ccomp Clausal Complement Object/Goal

expl Expletive Subject/nil

prep_that Prepositional Modifier Object/Goal
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Table 9. Features used for the classification of participant roles.

Feature ID Feature description

1 Process type of the clause the participant is in

2 The dependency relation of the participant with the root verb

3 Whether the participant is in the Subject position of the clause

4 The position of the participant relative to other participants (can be first, second or third)

Table 10. Features for classifying participants in the example clause.

Participant Process type Dependency Is Subject? Position
Campeau (c. 1) doing nsubj Yes Ist
chains (c. 1) doing dobj No 2nd
Campeau (c. 2) doing nsubjpass Yes Ist

in the corpus is 18 in total, in fact only a few choices are available given a particular
process type. For the material process type, for example, the available participant roles are
the following five: Initiator, Recipient, Client, Scope and Attribute.

4. Evaluation and performance

The data from our corpus are divided into a tuning set and an evaluation set. We use 20 of the 81
documents for feature engineering and model development, and the remaining documents for
evaluation, performing a 10-fold cross-validation on a random forests classifier (Breiman 2001).
Random forests are an ensemble classifier based on decision trees. The idea is that growing an
ensemble of decision trees and letting them vote in a classification task can lead to significant
improvement in accuracy. The theoretical underpinnings for the learning model are detailed in
Breiman (2001) and Liaw and Wiener (2002). The advantages of random forests over other
learning algorithms are that (1) it is an effective tool in prediction that yields state-of-the-art
performance, (2) it does not overfit, (3) it is fast, (4) it gives estimates of the relative importance
of variables (useful in feature selection) and (5) it is effective in estimating missing data (such as
the participant roles which are often missing in our feature sets). We also compare the
performance of the random forests classifier with another state-of-the-art classifier based on
Support Vector Machine (SVM) (Chang and Lin 2011). We use a simple baseline to compare
with the performance of the classifier. The baseline performance is obtained by always choosing
the most frequent class in the test data. In our corpus, the most frequent process type is doing,
and thus, the baseline classifier would just pick this as the predicted class without considering
any other features (Table 11).

Table 11. Performance statistics for the classification of process types. The
statistics in bold indicate the best performance among the sets of features.

Features Model Precision Recall F-Measure
Naive Baseline RF 0.199 0.447 0.275
Verb Only RF 0.731 0.760 0.745
Verb + Syntactic RF 0.769 0.780 0.774
Verb + Syntactic + UKB RF 0.803 0.808 0.805

Verb + Syntactic + UKB SVM 0.773 0.751 0.762
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The classification results seem to suggest that the classification of process types is still
heavily lexically grounded. Most of information for the classification can be deduced from
looking at the word itself and guessing its possible function without taking other contextual
features such as syntactic dependencies and surrounding content words into account. On the
other hand, the information as encoded in the syntactic and contextual features conflates with
the lexical information to a large degree. This is reflected from our observation that even
without using the words themselves as features we still get more or less the same level of
performance. As a result of the conflation, although the syntactic and WSD features have
proven useful in disambiguating the process types, the performance increase is not as great as
expected. To some degree, this is not surprising since the disambiguation of functions, with its
similarity to WSD, is an Al hard problem, and only a few WSD systems have managed to
achieve marginal gains over the most frequent sense on “all-words exercises” (as opposed to
limiting the number of words to only a handful) despite years of research into the problem.

Looking at class-specific performance (Table 12), we see that the behavioural process has
the lowest accuracy. This conforms with feedback from corpus annotators during the annotation
phase when they complained about the difficulties in differentiating the behavioural from other
types of process such as material:doing and mental. The second worst performing process type
is affection. This might be explained by its low number of instances in the testing corpus, since
the performance of a class can be affected adversely by insufficient training samples. The
affection process type is followed by identifying and happening, both of which are subcategories
of a major process type (relational and doing) and may be more easily confused with their close
“relatives” (attributive and doing). The class with the highest accuracy is verbal, presumably
due to there being only one class in the major process type and there are relatively few
ambiguous word types that realize verbal functions (e.g. most commonly say, state, announce).
Another evaluation is performed on the classification of participant roles. Similar to process type
evaluation, we also set up a naive baseline that always picks the most frequent participant role in
the corpus. We also compare the performance of the classifier using a few ablations of the
features (the numbers refer to the feature ID in Table 9).

As seen from Table 13, the random forest classifier has yielded relatively high
performance in classifying participant roles. Starting with only the process type as
features, the performance is poor. However, with the addition of grammatical role
information — such as whether the participant is in the Subject position — the most
substantial gain in performance is achieved. This confirms our intuition that knowing
the process type of a clause may put the participants in the right functional configuration,

Table 12. Class-specific performance for each process type using
random forests.

Class Precision Recall F-Measure
verbal 0.905 0.882 0.893
doing 0.819 0.907 0.860
attributive 0.857 0.857 0.857
cognition 0.813 0.777 0.794
behavioural 0.324 0.190 0.240
affection 0.882 0.556 0.682
perception 0.870 0.690 0.769
existential 0.759 0.688 0.721
identifying 0.731 0.667 0.698

happening 0.767 0.646 0.701
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Table 13. Performance statistics for classification of participant roles. The numbers
(1), (2), (3), (4) refer to the feature ID in Table 9. The statistics in bold indicate the
best performance among the sets of features.

Features Model Precision Recall F-Measure
Naive baseline RF 0.095 0.308 0.145
(1) only RF 0.562 0.646 0.601
(H+@3) RF 0.853 0.877 0.865
MH+2Q)+B)+® RF 0.907 0.929 0.918
MH+Q2)+B)+ @ SVM 0.897 0.924 0.910

Table 14. Detailed performance by class for classification of
participant roles.

Class Precision Recall F-Measure
Phenomenon 0.899 0.879 0.889
Senser 0.924 0.937 0.931
Sayer 0.977 0.991 0.984
Verbiage 0.810 0.823 0.816
Value 0.975 0.994 0.984
Token 0.993 0.972 0.982
Goal 0.888 0.956 0.920
Actor 0.944 0.934 0.939
Carrier 0.994 0.969 0.981
Attribute 0.945 0.992 0.968
Recipient 0.333 0.014 0.028
Receiver 0.000 0.000 0.000
Existent 1.000 1.000 1.000
Client 0.000 0.000 0.000
Scope 0.766 0.901 0.828
Beneficiary 0.000 0.000 0.000
Behaver 0.906 0.935 0.921
Behaviour 0.000 0.000 0.000

and information on grammatical relations within the configurations can be crucial in
disambiguating the participant roles (Table 14).

The detailed performance across the classes seems to be quite divided, ranging from perfect
prediction to zero accuracy. The class that achieved 100% accuracy is the relatively simple case
of EXxistent, which is the only possible participant given the existential process. The overall
performance for the nuclear participants is high, while the worst performing classes are all non-
nuclear participants (Receiver, Client, Beneficiary, Behaviour, Recipient). This may have been
due to the low percentage of the non-nuclear participants as well as the inability of the feature for
the relative position of the grammatical roles to distinguish between nuclear and non-nuclear
participants. Overall, while there is still room for further improving the accuracy of the
transitivity classifier, initial experiments have shown promising results and support the notion
that automating transitivity analysis is both practical and feasible using data-driven machine-
learning techniques.

5. Extending to resource-poor languages

So far our discussion has been limited to the labelling of transitivity structure in the
English language. Compared with English with its lexical resources (e.g. WordNet),
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annotated corpora (e.g. Penn Treebank), syntactic parsers (e.g. the Stanford Parser) and
semantic analysis tools (e.g. UKB), available linguistic resources in most other languages
are scarce in comparison. For example, Chinese, while being one of the most widely used
languages, has a relative paucity of lexically and semantically annotated resources, and it
is only in recent years that efforts have been made to build Chinese counterparts of
existing English corpora and tools (Li et al. 2003; Xue et al. 2005). Given this resource
scarcity, extending our system to deal with languages other than English is a challenging
task. Despite this, we propose to overcome the problems by adopting two general
approaches.

The first is active learning (Zhu, Lafferty, and Ghahramani 2003) in the annotation
process. Our current corpus has been annotated mostly manually, with the help of a web-
based collaborative platform. The uneven distribution of words and their senses often
means that most of the efforts go into annotation of frequently appearing words, which is
often unnecessarily repetitive and adds little value to subsequent disambiguation of
semantic senses. Active learning is where a learning algorithm tells us which set of
unlabelled data to label. This is often more desirable than selecting our own set of data
to label randomly. In addition to expanding the current functional corpus, active learning
is also particularly useful when creating new functional resources in a new language such
as Chinese, substantially reducing the time and cost involved in the annotation.

The second is the use of annotation projection (Pad and Lapata 2009). The key idea
behind annotation projection is that, given a pair of parallel corpora that are translations of
each other, one in English (E) and one in a less resource-rich language such as Chinese
(C), we can first annotate E for its functional structure and then project this functional
structure onto C by relying on word alignment information in the translation pairs. After a
sizable set of the sentences in C has been annotated with functional structure through
annotation projection, a classifier can then be trained on the set independently of the
parallel corpora.

With the use of semisupervised learning and annotation projection, we envision that
the extension of our current system to cover resource-poor languages will be made
significantly more efficient.

6. Conclusion

In this article, I have discussed the problem of automating the analysis of SFL transitivity
function structures. A small-scale corpus was annotated for its transitivity structure to
which has been applied state-of-the-art machine-learning algorithms for the automatic
classification of the process types and participant roles of clauses. I modelled the tasks as
a role labelling task and a sense disambiguation task, detailing the process in which we
engineered key features for the classification. The labelling system was able to achieve
performance significantly better than our baselines.

Due to difficulties in automatic text analysis using SFL, current state-of-the-art work is
still limited both in scope and in functionality. As with other semantically oriented tasks in
NLP such as semantic role labelling, determining the multifaceted functional roles of a
functional component is an Al hard problem, more complicated than their syntactic
counterparts as this depends more on the configuration of a wide range of contextual
factors such as the functional semantic configuration in different usage patterns. Due to
such difficulties, a parser for producing the complete SFL structures of free-form texts has
yet to be developed. What is proposed here is a new perspective inspired by advances in
other fields of NLP which have achieved success. Work is ongoing in The Halliday Centre
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at City University of Hong Kong to build on this system to create a more comprehensive
and robust parser for SFL analysis.
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