

Table des matières

Remerciements	
Introduction	21
Chapitre 1 • Les constituants de la matière	23
I – Structure simplifiée de l'atome	23
II – Nomenclature – Isotopes	28
III – Le tableau périodique	30
IV – Calcul des masses molaires	32
Exercices du chapitre 1	34
Corrigés des exercices du chapitre 1	35
Chapitre 2 • Historique de la radioactivité	37
I – Les découvertes sur les phénomènes liés à la radioactivité	37
1 – La découverte des rayons X	37
2 – La découverte de la radioactivité	38
3 – La découverte du polonium et du radium	39
4 – La découverte de la loi de la décroissance radioactive	40
5 – La découverte de la radioactivité artificielle	40
6 – La découverte de la fission nucléaire	42
7 – La découverte de la fusion nucléaire	42
II – Les découvertes en physique atomique et en physique nucléaire	43
1 - Les différents modèles de l'atome	43

	2 – L'expérience de Chadwick	44
	3 – La théorie de Fermi	45
	4 – La découverte des éléments artificiels	47
	5 – Un pas vers la physique des particules et la physique moderne	47
III –	Le développement du nucléaire	52
	1 – L'essor du nucléaire au début du XX ^e siècle	52
	2 – La création de l'ICRU et de la CIPR	52
	3 – La seconde guerre mondiale	53
	4 – Le développement de l'armement nucléaire	55
	5 – Le développement des centrales nucléaires	56
Cha	upitre 3 • Énergie au cœur de la matière	61
	Les unités usuelles de la physique nucléaire	61
	1 – Unité de masse	61
	2 – Unité d'énergie	62
	3 – Relation masse-énergie	63
II –	Origine de l'énergie nucléaire	64
	1 – Défaut de masse	64
	2 – Énergie de liaison	65
	3 – Excès de masse	67
	4 – Courbe d'Aston	68
III –	Bilan énergétique d'une réaction nucléaire	69
	1 – Réaction nucléaire et lois de conservation	69
	2 – Énergie dans une réaction nucléaire	70
	3 – Énergie de séparation du dernier neutron	71
Exer	cices du chapitre 3	71
Cori	rigé des exercices du chapitre 3	73
Cha	pitre 4 • La radioactivité	77
I –	Activité d'une source radioactive	77
	1 – Définitions	77
	2 – Forme mathématique	78
II –	Étude systématique des transitions radioactives	80
	1 – Définitions	80
	2 – La désintégration α	82
	3 – La désintégration β^-	85
	4 – La désintégration β +	87
	5 – La désintégration par capture électronique $arepsilon$	90
	6 – La désexcitation γ	93

7 – La désexcitation par conversion interne <i>e.c.</i>	94
8 – Phénomènes secondaires accompagnant les transitions nucléaires	95
III – Stabilité et instabilité dans le noyau	98
1 – Le noyau stable	98
2 – Le noyau instable	99
Exercices du chapitre 4	103
Corrigés des exercices du chapitre 4	107
Chapitre 5 • Décroissance radioactive et comptage nucléaire	117
I – Loi de décroissance radioactive	117
II – Les filiations radioactives	120
1 – Problème à 2 corps	120
2 – Équilibres radioactifs	123
3 – Problème à <i>n</i> corps	125
III – Activation neutronique	126
1 – Définition de l'activation neutronique	126
2 – Mise en équation de l'activation neutronique	126
3 – Période d'activation suivie d'une période de décroissance	129
IV – Caractère aléatoire d'un comptage radioactif	129
Exercices du chapitre 5	134
Corrigé des exercices du chapitre 5	138
Chapitre 6 • Interaction rayonnement-matière	145
I – Généralités sur l'interaction rayonnement-matière	145
II – Interaction des ondes électromagnétiques avec la matière	147
1 – La diffusion Thompson	147
2 – La diffusion Rayleigh	148
3 – L'effet photoélectrique	148
4 – L'effet Compton	149
5 – Production de paires ou matérialisation	150
6 – L'effet photonucléaire	151
7 – Importance relative des processus d'interaction photoniques	152
III – Interaction des particules avec la matière	152
 1 – Cas des particules chargées lourdes 	153
2 – Cas des particules chargées légères	156
3 – Cas des neutrons	159
4 – Effet Tcherenkov	161
5 - Fabrication d'une source neutronique	161
Exercices du chapitre 6	162
Corrigé des exercices du chapitre 6	164

Chaj	pitre 7	• Introduction à la dosimétrie externe	169
I –	Génér	alités sur la dosimétrie	169
	1 – E	ffets des rayonnements ionisants	169
	2 – D	éfinition de la dosimétrie	170
II –	Grand	eurs physiques	171
	1 - C	Quantités intégrales	171
	2 - Q	Quantités dérivées	172
	3 - Q	Quantités globales	172
III –	Grand	eurs dosimétriques	173
	1 – D	ose absorbée et débit de dose absorbée	173
	2 – K	ERMA et débit de KERMA	174
	3 – E	xposition et débit d'exposition	175
IV –	Calcu	s de débits de dose absorbée pour les particules chargées	
	légères		176
		omportement des particules chargées légères	
		ans la matière	176
		elation entre dose et fluence pour des électrons	
		nonoénergétiques	178
		elation entre dose et fluence pour des électrons	101
	_	olyénergétiques (spectre β)	181
V –		s de débits de dose absorbée pour les photons	183
		omportement des photons dans la matière	183
		elation entre fluence et KERMA pour des photons	186
		elation entre KERMA et dose absorbée pour des photons	187
		nergie moyenne des électrons secondaires	191
		léthode de calcul de la dose absorbée pour des photons	192
		alcul du débit de KERMA	192
		alcul du débit de dose	192
VI –		ation du KERMA pour les neutrons	193
		omportement des neutrons dans la matière	193
		ERMA de première collision	193
		ERMA de multi-collisions	194
VII –		leurs de protections et grandeurs opérationnelles	195
		es grandeurs de protection	195
		randeurs opérationnelles	198
Exerc	cices di	ı chapitre 7	201
Corr	ioé des	exercices du chapitre 7	204

Chapitre 8 • Détection	213
I – Les différents types de détecteurs	213
1 – Modélisation d'un détecteur	213
2 – Caractérisation des détecteurs	215
3 – Les familles de détecteur	217
II – La spectrométrie gamma	221
1 – Objectif de la spectrométrie	221
2 – Chaîne de comptage en spectrométrie	222
3 – Forme générale des spectres de photons	222
4 – Exemple d'un spectre réel	225
III – Les limites de détection	226
1 – Principe	226
2 – Le seuil de décision	227
3 – La limite de détection	228
4 – Activité minimum détectable	229
Exercices du chapitre 8	229
Corrigé des exercices du chapitre 8	231
Chapitre 9 • Moyens de protection contre l'exposition externe	237
I – Moyens de protection contre l'exposition externe aux rayonnements	238
1 – La distance	238
2 – L'activité	239
3 – Le temps	240
4 – Les écrans	240
II – Protection contre les électrons	241
1 – Arrêt des électrons dans la matière	241
2 – Cas d'une exposition externe avec contact	242
III – Protection contre les neutrons	243
1 – Origine des neutrons dans une installation	243
2 – Moyens mis en œuvre pour la protection contre les neutrons	244
IV – Calcul d'écrans pour la protection contre les rayonnements	
électromagnétiques	245
 1 – Sources ponctuelles canalisées 	245
2 – Sources ponctuelles monoénergétiques non canalisées	248
V – Surveillance de l'exposition externe dans les installations nucléaires	251
1 – Appareils de mesure	251
2 – Surveillance de l'installation	252
3 – Surveillance des travailleurs	253
Exercices du chapitre 9	254
Corrigé des exercices du chapitre 9	257

Chapitre 10 • Moyens de protection contre l'ex	position interne 263
I – Physique des aérosols et contamination	263
1 – Définition	263
2 – Diamètre des aérosols	264
3 – Voies de pénétration dans l'organisme	265
4 – Durée de séjour dans l'organisme	266
5 – Modèle du tractus respiratoire	267
6 – Modèle du tractus digestif	269
II – Grandeurs liées à l'évaluation de l'exposition in	nterne 270
1 – Activité surfacique	270
2 – Activité volumique	270
3 – La dose par unité d'incorporation (DPUI)	271
4 – La limite dérivée de concentration dans l'a	air (LDCA) 272
5 – Le repère de concentration dans l'air (RCA	A) 273
6 – La dose efficace engagée	274
III – Mesures et évaluation de la contamination	274
1 - Contamination surfacique	274
2 - Contamination volumique	277
IV - Techniques de confinement et d'élimination d	e la contamination
dans les installations nucléaires	281
1 – La défense en profondeur	281
2 – Ventilation et filtration dans une installati	on 283
3 – Surveillance continue de l'installation	289
V – Protection des travailleurs	289
1 – Protections collectives	289
2 – Protections individuelles	291
3 – Contrôles et décontamination	293
VI – Décontamination des surfaces	295
1 – Définition	295
2 – Approche de la décontamination	295
3 – Procédés de décontamination	296
Exercices du chapitre 10	298
Corrigé des exercices du chapitre 10	304
Chapitre 11 • Les effets biologiques des rayonn	ements ionisants 315
I – Les effets moléculaires et cellulaires	315
1 – Effets moléculaires	316
2 – Effets cellulaires	317
II – Les effets déterministes	319

	1 – Causes des effets déterministes	319
	2 – Propriétés des effets déterministes	320
	3 – Seuils des effets déterministes	321
III -	- Les effets stochastiques	323
	1 – Propriétés des effets stochastiques	323
	2 – Effets cancérogènes	324
	3 – Effets génétiques et héréditaires	327
Con	clusion	328
Cha	apitre 12 • Bases de la réglementation	329
I –	Grands principes de réglementation en radioprotection	329
	1 – But de la radioprotection	329
	2 – Les instances internationales et nationales	330
	3 – Classement des installations	332
II –	Réglementation en radioprotection dans le droit français	334
	1 – Réglementation des travailleurs	335
	2 – Zonage radioprotection	343
	3 – Principe ALARA	348
	4 – Rôles du conseiller en radioprotection	350
	5 – Régimes administratifs	354
	6 – Contrôles réglementaires des sources et des appareils	356
	7 – Situations anormales de travail	359
	8 – Situations d'urgence radiologique	361
	9 – Expositions médicales	363
III -	- Réglementation transport	364
	1 – Cadre réglementaire	364
	2 – Transport par route	366
	3 – Classe 7	367
	4 – Emballage et étiquetage des colis	369
	5 – Contrôles et limites réglementaires	372
Exe	rcices du chapitre 12	372
Cor	rigé des exercices du chapitre 12	373
Cha	apitre 13 • La fission nucléaire et la fusion nucléaire	377
I –	Principe de la fission nucléaire	377
	1 – Principe	377
	2 – La fission spontanée	378
	3 – La fission induite	378
	4 – La réaction de fission en chaîne	380

II –	Principe de la fusion nucléaire	381
	1 – Principe	381
	2 – Énergétique de la fusion nucléaire	381
Exer	rcices du chapitre 13	383
Cor	rigé des exercices du chapitre 13	385
Cha	apitre 14 • Les différentes formes de l'énergie	389
I –	Définition de l'énergie	389
	1 – Quelques exemples	389
	2 – Définition	390
II –	Les différentes formes de l'énergie	390
	1 – Les sources d'énergie	390
	2 – Les différentes formes de l'énergie	390
III -	- Principe de conservation de l'énergie	391
	1 – Un exemple de mécanique	391
	2 – Énoncé du théorème	392
IV -	- Inventaire des énergies mises en jeu dans une centrale nucléaire	393
	1 – Transformation de l'énergie dans une centrale nucléaire	393
	2 – Puissance d'une centrale nucléaire	393
Exer	cices du chapitre 14	394
Cor	rigé des exercices du chapitre 14	395
Cha	apitre 15 • Fonctionnement d'une centrale nucléaire et gestion	
	des déchets nucléaires	397
I –	Présentation du parc électronucléaire français	397
	1 – Développement du parc français	397
	2 – Le parc électronucléaire français en exploitation	398
II –	Principe de fonctionnement d'un REP	399
	1 – Rôle des trois circuits	399
	2 – Rôles de l'eau dans les circuits	402
	3 – Pilotage et domaine de fonctionnement d'un réacteur	402
III –	- La fission industrielle	404
	1 – Le combustible utilisé pour la réaction en chaîne	404
	2 – Criticité du réacteur	406
IV -	- Origine du risque radiologique et gestion des déchets nucléaires	407
	1 – Origine du risque radiologique	407
	2 – Gestion des déchets radioactifs	410
	3 – Contrôles environnementaux et entretien de l'installation	413
Exer	rcices du chapitre 15	414
Cor	rigé des exercices du chapitre 15	417

Cha	pitre 16 • Les évaluations dosimétriques prévisionnelles	421
I –	Principe des EDP	423
	1 – Classement des activités	423
	2 – Grandeurs utilisées pour les EDP	424
II –	Mise en œuvre d'une EDP	425
	1 – Description de l'intervention	425
	2 – EDPI	425
	3 – EDPO	426
Con	clusion	427
Exer	cice du chapitre 16	428
Cori	rigé de l'exercice du chapitre 16	429
Cha	pitre 17 • Diverses utilisations des rayonnements ionisants	
	et des radionucléides	431
I –	Le domaine médical	431
	1 – La radiologie	431
	2 – La médecine nucléaire	433
	3 – Le traitement des cancers	435
	La stérilisation par irradiation	436
III –	Les dispositifs de contrôle	438
	1 – Les contrôleurs de bagages	438
	2 – L'appareil gammagraphique	439
	3 – Les jauges de niveau et d'épaisseur	439
	4 – Les détecteurs de plomb par fluorescence X	440
	5 – Radiotraceurs dans l'industrie	441
	Propulsion de véhicules	441
V –	Les applications en sciences fondamentales	443
	1 – Archéologie et objets d'art	443
	2 – Géologie et hydrologie	445
	3 – Aérospatial	445
	4 – Recherche fondamentale	446
VI –	Utilisations obsolètes des rayonnements ionisants et des radionucléides	447
Cha	pitre 18 • La radioactivité naturelle et artificielle	449
I –	La radioactivité naturelle	449
	1 – Exposition externe	449
	2 – Exposition interne	453
II –	La radioactivité artificielle	456
	1 – Exposition liée à l'activité militaire et industrielle	456
	2 – Exposition liée à l'activité médicale	457

III - L'exposition ann	uelle mondiale et française	459
Exercices du chapitre	18	462
Corrigé des exercices o	du chapitre 18	464
Chapitre 19 • Quel	ques accidents liés à l'utilisation du nucléaire	469
I – Classements des	accidents	469
1 – Échelle INF	ES	469
2 – Événements	s significatifs	471
II – Accidents liés à l	l'industrie	471
1 – Liste des acc	cidents classés dans le monde et en France	471
2 – L'accident d	le Tchernobyl	473
3 – L'accident d	le Tokaï-Mura	474
4 – L'accident d	le Fukushima	475
III - Accidents liés au	ı médical	476
1 – L'accident d	le Goiânia	476
2 – Les surirrad	iations d'Épinal et Toulouse	477
Conclusion		479
Annexes		481
Annexe 1: Alphabet	grec utilisé en sciences	481
_	ons et unités des grandeurs en physique	
	international)	482
Annexe 3: Multiples internation	s et sous-multiples des unités du Système onal	483
Annexe 4: Constant	es fondamentales en physique et facteurs	
de convei	rsion	483
Annexe 5 : Perte d'ér en MeV.c	nergie par ionisation pour les électrons cm ² .g ⁻¹	484
	es coefficients d'absorption massique	
	$e^{\frac{\mu_{en}}{\rho}}$ en cm ² .g ⁻¹ dans l'eau, l'air, l'os compact	
et les tissi	us mous	485
	es coefficients d'absorption massique en énergie $\frac{\mu_{en}}{\rho}$	
-	-1 dans des milieux monoatomiques	486
	nts d'atténuation massique μ/ ho (cm 2 .g $^{-1}$) Érents matériaux	486
	nts d'atténuation linéique $\mu_{ m l}$ (cm $^{-1}$) pour différents	
matériau		487

Annexe 10 : Facteur d'accumulation de dose (<i>Build-up</i>) pour une source	
ponctuelle dans l'eau	488
Annexe 11 : Facteur d'accumulation de dose (Build-up) pour une source	
ponctuelle dans le plomb	488
Annexe 12 : Facteur d'accumulation de dose (Build-up) pour une source	
ponctuelle dans le béton ordinaire	489
Annexe 13 : Affections provoquées par les rayonnements ionisants prises	
en charge par le Régime général en France	489
Annexe 14 : Valeurs d'exemption pour les radionucléides ou substances	
radioactives, et niveaux définissant une source scellée	
de haute activité (annexe 13-8 du code de la santé publique)	490
Annexe 15 : Limites réglementaires retenues par la réglementation transport	492
Annexe 16 : Codes ONU pour la classe 7	493
Annexe 17 : DPUI (en Sv/Bq) pour différents nucléides publiés	
par le Journal officiel de la République française	494
Annexe 18 : Liste des principales installations nucléaires du parc nucléaire	
français	495
Annexe 19 : Appareils gammagraphiques	496
Annexe 20 : Principe de fonctionnement des générateurs de rayons X	498
Annexe 21 : Tableau périodique des éléments chimiques	499
Bibliographie	501