

Table des matières

Avant-propos		7
Résur	Résumé	
Chap	oitre 1 • Calcul des grandeurs radiométriques et dosimétriques	2.1
	(fluence, kerma, dose et équivalent de dose ambiant)	21
1.I	Calculs élémentaires du débit de fluence pour différentes géométries	
	de sources	21
1.II	Calculs élémentaires d'équivalents de doses ambiants	29
1.III	Calcul de dose et de kerma pour les photons dans un milieu	2.6
	avec interfaces	36
1.IV	Calcul du débit d'équivalent de dose ambiant dans un tuyau uniformément contaminé	45
1.V	Calcul de la dose absorbée en profondeur pour des eta	50
1.VI	Calcul du profil de dose absorbée pour des protons de 170 MeV dans l'eau	60
1.VII	Calculs du kerma neutron et des spectres microdosimétriques	
	avec un compteur proportionnel équivalent tissu	72
Chap	oitre 2 • Principes de détection et réponses des détecteurs	
	pour les grandeurs physiques de référence	
	et les grandeurs dosimétriques opérationnelles	91
2.I	Chambre fonctionnant en chambre d'ionisation pour les photons	
	et en compteur proportionnel pour les neutrons	91

2.II	Étalonnage au ⁶⁰ Co d'une chambre d'ionisation	104
2.III	Calcul d'un débit de dose dans un FLi	116
2.IV	Mesure de H'(0.07, 0°) pour un spectre β avec une chambre	
	d'ionisation à extrapolation	123
2.V	Mesure de l'énergie et de la fluence pour des neutrons rapides	
	mono-énergétiques au moyen d'un télescope à proton de recul	130
2.VI	Mesure de l'énergie par temps de vol pour des neutrons rapides	
	mono-énergétiques	137
2.VII	Mesure du spectre neutronique au moyen des sphères de Bonner sur un poste de travail	141
2.VIII	Mesure d'une dose dans un calorimètre à eau pour un faisceau	
	de protons de 170 MeV dédié à la protonthérapie	149
2.IX	Étalonnage d'un débitmètre neutron avec une source de ²⁵² Cf	156
Chap	• Calcul de blindage et d'activation pour différents types d'installations (sources radioactives, générateurs X,	
	accélérateurs)	167
3.I	Calcul d'un blindage pour une source neutronique d'Am-Be	167
3.II	Calcul du débit d'équivalent de dose ambiant pour une source	
	de photons de ⁶⁰ Co derrière un écran de 4 mètres d'eau	172
3.III	Calcul de la protection biologique autour d'un générateur X	182
3.IV	Calcul d'activation neutronique et du débit d'équivalent de dose	
	ambiant résultant	194
3.V	Calcul du débit d'équivalent de dose ambiant diffusé	
	pour un faisceau de générateur X sur un fantôme d'eau	205
3.VI	Calcul des protections radiologiques autour d'un accélérateur	212
	d'électrons avec une cible de conversion X	212
Ráfár	ences	247