

Table des matières

Cont	ibuteurs	5	
Préfa	re	7	
Chaj	itre I • Systèmes d'imagerie portale électronique à 2 dimension ou EPID	ns 17	
	BERGER Lucie, MARINELLO Ginette et TAN Li		
I.1.	Description des différents systèmes	18	
	1.1. Systèmes fixés sur l'accélérateur linéaire	20	
	1.2. Systèmes indépendants	20	
I.2.	Principe de formation de l'image		
	2.1. Détecteurs d'image à base de silicium amorphe	21	
	2.2. Détecteurs d'image basés sur un écran fluorescent couplé		
	à une caméra CCD	23	
I.3.	3. Exploitation des résultats et recalage des images		
I.4.	Contrôle de qualité		
	4.1. Points communs à tous les programmes de contrôle de qual	ité 25	
	4.2. Matériels	25	
	4.2.1. Objets-tests ou fantômes	25	
	4.2.2. Logiciels d'exploitation d'images	27	
	4.3. Contrôles	27	
I.5.	Utilisation, avantages et inconvénients	28	

	5.1.	aSi-EPID solidaires de l'accélérateur	28	
		5.1.1. Utilisation	28	
		5.1.2. Avantages et inconvénients	30	
	5.2.	EPID indépendants	30	
Chap	itre II	Systèmes d'imagerie embarquée	31	
	MAI	RINELLO Ginette, MÈGE Jean-Pierre, CHEN Lixin et MA Lin		
II.1.	Syste	èmes kV-kV d'imagerie « 2D » par RX de basse énergie	32	
		Description	32	
		Principe de formation de l'image	33	
	1.3.	Exploitation des résultats et recalage des images	34	
	1.4.	Contrôle de qualité	35	
		1.4.1. Points communs à tous les programmes de contrôle de qualité	35	
		1.4.2. Matériels	35	
		1.4.3. Contrôles	36	
	1.5.	Utilisation, avantages et inconvénients	38	
II.2.	Systèmes kV-CBCT d'imagerie tomodensitométrique par RX			
	-	asse énergie	38	
	2.1.	Description	38	
	2.2.	Principe de formation de l'image	39	
	2.3.	Exploitation des résultats et recalage des images	40	
	2.4.	Contrôle de qualité	41	
		2.4.1. Points communs à tous les programmes de contrôle		
		de qualité	41	
		2.4.2. Matériels	41	
		2.4.3. Contrôles	42	
		Utilisation, avantages et inconvénients	44	
II.3.		èmes MV-CBCT d'imagerie tomodensitométrique par RX		
		aute énergie	44	
		Description	44	
		Principe de formation de l'image	45	
		Exploitation des résultats et recalage des images	45	
	3.4.	Contrôle de qualité	46	
		3.4.1. Points communs à tous les programmes de contrôle de qualité	46	
		3.4.2. Matériels	46	
		3.4.3. Contrôles	47	
	3 5	Utilisation avantages et inconvénients	47	

II.4.	Système MV-CT d'imagerie par RX de haute énergie de l'appareil Tomotherapy [®]				
	4.1. Description du système d'imagerie	48 48			
	4.2. Principe	49			
	4.3. Exploitation des résultats et recalage des images	50			
	4.4. Contrôle de qualité	51			
	4.4.1. Points communs à tous les programmes de contrôle de qualité	51			
	4.4.2. Matériels	51			
	4.4.3. Contrôles	52			
	4.5. Utilisation, avantages et inconvénients	53			
Chap	• Systèmes d'imagerie « 2D × 2D » et « 3D » fixés au sol et au plafond	55			
	CHASSIN Vincent, LACORNERIE Thomas, PORCHERON Denis,))			
	LU Jun, MA Lin et LI Xiaobo				
III.1.	Système d'imagerie BRAINLAB-ExacTrac®				
	1.1. Description	56			
	1.2. Principe de formation de l'image stéréoscopique par RX	58			
	1.3. Exploitation des résultats et recalage des images RX	59			
	1.4. Contrôle de qualité	60			
	1.4.1. Points communs à tous les programmes de contrôle				
	de qualité	61			
	1.4.2. Matériels	61			
	1.4.3. Contrôles	63			
	1.5. Utilisation, avantages et inconvénients	63			
III.2.	Systèmes d'imagerie du CYBERKNIFE®	64			
	2.1. Description	64			
	2.2. Principe de formation de l'image	65			
	2.3. Exploitation des résultats et recalage des images	67			
	2.4. Contrôle de qualité	69			
	2.4.1. Points communs à tous les programmes de contrôle	(0			
	de qualité 2.4.2. Matériels	69			
	2.4.2. Materiels 2.4.3. Contrôles	69 70			
		70			
III 2	2.5. Utilisation, avantages et inconvénients	70 71			
III.3.	Systèmes d'imagerie du GAMMA KNIFE®				
	3.1. Description 7				
	3.2. Principe de formation de l'image	74			

	3.3. Exploitation des résultats et recalage des images de CBCT	75
	3.4. Contrôle de qualité	76
	3.4.1. Points communs à tous les programmes de contrôle	
	de qualité	76
	3.4.2. Matériels	76
	3.4.3. Contrôles	77
	3.5. Utilisation et intérêt	78
Chap	itre IV • Systèmes d'imagerie « 3D » non irradiants	79
	BISTON Marie-Claude, MALET Claude et XIE Conghua	
IV.1.	Systèmes optiques d'imagerie surfacique	79
	1.1. Description	80
	1.2. Principe	81
	1.3. Exploitation des résultats	82
	1.4. Contrôle de qualité	83
	1.5. Utilisation, avantages et inconvénients	84
	1.5.1. Utilisation	84
	1.5.2. Avantages et inconvénients	85
IV.2.	Systèmes à ultrasons	86
	2.1. Description	86
	2.2. Exploitation des résultats	89
	2.3. Contrôle de qualité	89
	2.4. Utilisation, avantages et inconvénients	91
Chap	itre V • Utilisation des équipements d'imagerie pour contrôler	
	la position du patient	93
	BODEZ Véronique, BEAUDRÉ Anne, GARCIA Robin,	
	JIANG Mawei, WU Meng, LU Jun et LI Jingao	
V.1.	Irradiations standard : sein	94
	1.1. Equipements utilisables	95
	1.2. Description de la méthode	96
	1.3. Avantages et inconvénients	98
V.2.	Irradiations par modulation d'intensité (IMRT) et par arcthérapie	
	volumétrique (VMAT) : ORL	99
	2.1. Équipements utilisables	100
	2.2. Description de la méthode	100
	2.3. Avantages et inconvénients	104

V.3.	Irradiations stéréotaxiques intracrâniennes	104		
	3.1. Équipements utilisables	106		
	3.2. Description de la méthode	107		
	3.3. Avantages et inconvénients	111		
V.4.	Irradiations stéréotaxiques extracrâniennes : métastases osseuses	111		
	4.1. Equipements utilisables	114		
	4.2. Description de la méthode	114		
	4.3. Avantages et inconvénients	115		
Chap	itre VI • Utilisation des équipements d'imagerie			
	pour l'irradiation des tumeurs mobiles	117		
	AYADI-ZAHRA Myriam, BOUSCAYROL Hélène et CHEN Jiayi			
VI.1.	Stratégie « ITV » : exemple du poumon	119		
	1.1. Équipements et description de la méthode	119		
	1.2. Avantages et inconvénients	123		
VI.2.	Stratégie « Gating » : exemple du poumon	123		
	2.1. Équipements et description de la méthode	124		
	2.2. Avantages et inconvénients	125		
VI.3.	Stratégie « Blocage respiratoire » : exemple du foie			
	3.1. Équipements et description de la méthode	126		
	3.2. Avantages et inconvénients	127		
VI.4.				
	poumon et du foie 4.1. Équipement et description de la méthode	128 128		
	4.1.1. Irradiation d'une tumeur pulmonaire sans fiduciaire	128		
	4.1.2. Irradiation d'une tumeur hépatique avec fiduciaires	131		
	4.2. Avantages et inconvénients	131		
VI.5.	e e e e e e e e e e e e e e e e e e e	132		
Chan	itre VII • Utilisation des équipements d'imagerie			
Chap	pour la protonthérapie	133		
	NAURAYE Catherine, PASQUIÉ Isabelle et JIN Yening			
VII.1.	Irradiation des tumeurs de la base du crane	134		
	1.1. Description de différents systèmes	134		
	1.2. Principe de formation de l'image	137		
	1.3. Exploitation des résultats et recalage d'images	137		
	1.4. Contrôle de qualité	140		
	1.5. Avantages et inconvénients	141		

VII.2.	Irrac	liation des mélanomes oculaires	141
	2.1.	Description du système d'imagerie	141
	2.2.	Principe de formation de l'image	143
	2.3.	Exploitation des résultats et recalage d'images	143
		Contrôle de qualité	145
		Avantages et inconvénients	145
Chapi	tre V	III • Utilisation de l'EPID pour la dosimétrie de transit	
		et le contrôle des doses délivrées au patient	147
		NCOIS Pascal, BADEL Jean-Noël, MARINELLO Ginette HEN Kaiqian	
VIII.1	. Con	trôles à effectuer sur l'EPID avant utilisation dosimétrique	148
VIII.2	. Dos	imétrie de transit basée sur un calcul par rétroprojection	150
	2.1.	Principe	150
		2.1.1. Calcul sur l'axe du faisceau	150
		2.1.2. Extension de la méthode hors de l'axe du faisceau	
		et aux traitements complexes	152
		Données de base nécessaires	154
		Avantages et inconvénients	155
VIII.3		imétrie de transit basée sur un calcul par simulation	
		nte Carlo	155
		Principe	156
	3.2.	Données de bases nécessaires	156
		3.2.1. Modélisation du faisceau de photons incident	156
		3.2.2. Modélisation du patient	157
		3.2.3. Modélisation de l'imageur portal	157
		Calcul de l'image portale de dose	158
/		Avantages et inconvénients	158
VIII.4		res méthodes de contrôle des doses délivrées au patient	159
		Principe	159
	4.2.	Données de bases nécessaires	161
		4.2.1. Données de base relatives à l'EPID	161
		4.2.2. Données de base relatives à l'accélérateur	161
		4.2.3. Données de base relatives au transfert	1/1
	62	au format DICOM	161
17III 7		Avantages et inconvénients	161
VIII.5	. Con	trôle de qualité	162

Chapi	tre IX	Doses délivrées par l'imagerie : évaluation et prise	
		en compte	163
	CHA	AVAUDRA Jean, MÈGE Jean-Pierre et ZHU Yuan	
IX.1.		hodes d'évaluation de la dose délivrée pour la réalisation	
	des i	mages	164
	1.1.	Imagerie portale électronique « 2D » (EPID)	165
	1.2.	Imagerie embarquée « 2D » de type kV-kV	166
	1.3.	Imagerie embarquée « 3D » de type kV-CBCT, MV-CBCT ou MV-CT	167
IX.2.	Vale	urs des doses	169
171.2.		Imagerie embarquée « 2D »	169
	2.1.	2.1.1. Imagerie portale électronique « 2D » (EPID)	169
		2.1.2. Imagerie « 2D » embarquée de type kV-kV	170
	2.2.		1/0
	2.2.	et Cyberknife®	171
	2.3.	Imagerie embarquée haute énergie « 3D » : MV-CBCT	
		et MV-CT	172
		2.3.1. Acquisition MV-CBCT	172
		2.3.2. Acquisition MV-CT : Tomotherapy®	173
	2.4.	Imagerie embarquée basse énergie « 3D » : kV-CBCT	175
IX.3.	Prise	e en compte des doses	178
	3.1.	Problèmes posés - aspects radiobiologiques	178
		3.1.1. Paramètres physiques et techniques	179
		3.1.2. Aspects cliniques et radiobiologiques	179
		3.1.3. Conclusions	179
	3.2.	Prise en compte des doses	180
		3.2.1. Imagerie « 2D » haute énergie (EPID)	180
		3.2.2. Imagerie « 2D » basse énergie	180
		3.2.3. Imagerie « 3D » haute énergie (MV-CBCT)	181
		3.2.4. Imagerie « 3D » haute énergie (MV-CT)	181
		3.2.5. Imagerie « 3D » basse énergie (kV-CBCT)	181
		3.2.6. Récapitulatif des doses d'imagerie et conclusion	182
Index			183
Références			187