

Table des matières

Préf	ace		11
Cha	pitre 1	• Outils mathématiques pour l'analyse des réseaux électriques	17
1.1	Introd	uction	17
1.2	Un pe	u de physique	18
1.3	Carac	téristiques générales des systèmes électriques	21
	1.3.1	Alternatif ou continu	21
	1.3.2	Réseau à 50 Hz et réseau à 60 Hz	25
	1.3.3	Système triphasé équilibré	26
	1.3.4	Niveaux de tension	34
1.4	Phase	ır	38
	1.4.1	Éléments d'un réseau électrique et phaseurs associés	39
	1.4.2	Calculs dans le domaine des phaseurs	42
1.5	Équiv	alence entre couplage triangle et couplage étoile	47
1.6	Puissances dans le cas du monophasé		49
	1.6.1	Puissance active et puissance réactive	49
	1.6.2	Puissances complexes	53
	1.6.3	Facteur de puissance	56
1.7	Puissa	nces en triphasé	58
1.8	Norm	alisation unitaire	59
1.9	Struct	ure du réseau de transport de l'électricité	63
Exer	cices		65
Réfé	Références hibliographiques		

Cha	pitre 2	Physique des centrales électriques	69
2.1	Introd	luction	69
2.2	Centr	ales thermiques	71
	2.2.1	Principe physique (thermodynamique)	72
2.3	Centr	ales nucléaires	77
	2.3.1	Fission nucléaire	78
	2.3.2	Fusion nucléaire	82
2.4	Énergies renouvelables		83
	2.4.1	Énergie du vent et technologie des aérogénérateurs	83
	2.4.2	Hydroélectricité (production et stockage d'énergie)	87
	2.4.3	Énergie solaire	90
	2.4.4	Géothermie	93
2.5	Altern	ateurs (machine synchrone en fonctionnement générateur)	95
Exer	cices		104
Réfé	rences l	bibliographiques	106
Cha	pitre 3	Transport et distribution de l'énergie électrique	107
3.1	Introd	luction	107
3.2	Résea	ux de transport et de distribution	109
3.3	Struct	ures des réseaux	112
3.4	Sous-s	stations	115
3.5	Struct	ure d'une sous-station	118
	3.5.1	Système à jeu de barres unique	118
	3.5.2	Système à double jeu de barres	118
	3.5.3	Système à jeux de barres en polygone	119
	3.5.4	Concept de un « disjoncteur et demi »	120
3.6			121
	3.6.1	Principes de fonctionnement des dispositifs de déclenchement	122
	3.6.2	Fusibles	127
	3.6.3	Disjoncteurs	129
	3.6.4	Coupure de l'arc	130
	3.6.5	Disjoncteur dans l'huile	132
		Disjoncteurs à air comprimé	133
	3.6.7	Disjoncteurs au SF ₆	133
	3.6.8	Disjoncteurs dans le vide	135
3.7	Limite	eurs de surtension	136
3.8	Transformateurs		138
	3.8.1	Couplage des enroulements	143
	3.8.2	Courant magnétisant	146
	3.8.3	Courant d'appel du transformateur à la mise sous tension	149
	3.8.4	Essais « à vide » et en « court-circuit »	151

3.9	Ouvra	ges pour le transport de l'énergie électrique	152
	3.9.1	Lignes « aériennes »	154
	3.9.2	Câbles « souterrains »	168
	3.9.3	Lignes de transport à isolation gazeuse	174
3.10		port en courant continu à haute tension	175
	cices		184
Réfé	rences	bibliographiques	185
Cha	pitre 4	Utilisation de l'énergie électrique	187
4.1	Introd	luction	187
4.2	Types de charges		188
	4.2.1	Conversion électromécanique	189
	4.2.2	Systèmes d'éclairage	195
	4.2.3	Systèmes de chauffage	197
	4.2.4	Systèmes d'alimentation en continu	197
	4.2.5	Énergie électrochimique	200
4.3	Classification des utilisateurs du réseau		201
	4.3.1	Charges résidentielles	201
	4.3.2	Charges commerciales et industrielles	204
	4.3.3	Traction électrique ferroviaire	205
Exercices		207	
Réfé	rences	bibliographiques	208
Cha	pitre 5	Contrôle du réseau électrique	209
5.1	Introd	luction	209
5.2	Princi	pes de base du contrôle du réseau électrique	212
5.3	Contr	ôle de la puissance active et de la fréquence	214
	5.3.1	Réglage primaire (équilibre en puissance)	214
	5.3.2	Réglage secondaire (LFC en anglais pour Load Frequency	
		Control)	220
5.4	Contr	ôle de tension et puissance réactive	223
	5.4.1	Régulation automatique de la tension du générateur (alternateur synchrone)	223
	5.4.2	Transformateur « régleur en charge » à changement de prises	226
		Injection de puissance réactive	228
5.5		ôle du transfert de puissance	233
J•J		Contrôle des flux de puissance active	233
		Contrôle des flux de puissance réactive	236
		Contrôleur du flux de puissance unifié (UPFC pour <i>Unified</i>	
56	EACT	Power Flow Controller) 'S pour Flexible AC Transmission Systems	239 240
, ()	1.71	A LIGHT FREXIME OF A LIGHTING WILLIAM AND PROPERTY.	

Exe	tercices	
Références bibliographiques		
Cha	apitre 6 • Gestion du transit des puissances dans les réseaux	
	électriques	245
6.1	Introduction	245
6.2	Transit de puissance	246
	6.2.1 Mise en équation de transit de puissance	247
	6.2.2 Résolution du système d'équations du transit de puissance	
	par la méthode de Newton-Raphson	257
	6.2.3 Méthode de calcul du transit de puissance par découplage	261
	6.2.4 Transit de puissance DC	266
6.3	Transit de puissance optimal	269
6.4	Estimateur d'état	270
	6.4.1 Schéma général de l'estimateur d'état	273
	6.4.2 Analyse des données erronées	275
	6.4.3 Analyse statistique de l'estimateur d'état	281
Exe	rcices	285
Réfé	érences bibliographiques	287
Cha	apitre 7 • Marché de l'électricité	289
7.1	Introduction	289
7.2	Structure du marché de l'électricité	290
	7.2.1 Transport et distribution	291
	7.2.2 Architecture du marché	291
7.3	Marché de compensation	293
7.4	« Bien-être social »	296
7.5	Couplage des marchés	298
7.6	Mécanisme d'allocation et définition des types de marchés	304
Réfé	érences bibliographiques	306
Cha	apitre 8 • Évolutions futures des réseaux électriques	307
8.1	Introduction	307
8.2	Énergie renouvelable	308
8.3	Production d'énergie électrique locale	309
8.4	Convertisseurs d'électronique de puissance comme interfaces	313
8.5	Stockage d'énergie	314
8.6	« Black-out » et phénomènes chaotiques	315
	8.6.1 Phénomènes non linéaires et chaotiques	315
	8.6.2 Black-out	319
Réfé	érences bibliographiques	326

Ann	nexe A • Équations de Maxwell	329
A.1	Introduction	329
A.2	Développement limité	331
A.3	Champ électromagnétique quasi statique dans un condensateur plan	333
	A.3.1 Solution en régime quasi statique	334
	A.3.2 Validation de l'approximation quasi statique	336
A.4	Modèle quasi statique pour une inductance à une spire	338
	A.4.1 Solution en régime quasi statique	338
	A.4.2 Validation de l'approximation quasi statique	340
A.5	Modèle quasi statique pour une résistance	342
	A.5.1 Solution en régime quasi statique	343
A.6	Application à la modélisation	346
Réfé	rences bibliographiques	346
Ann	exe B • Modélisation du transformateur de puissance	347
B.1	Introduction	347
B.2	Transformateur parfait	348
B.3	Bobines couplées magnétiquement	351
	B.3.1 Équivalence avec le transformateur parfait	354
B.4	Modélisation du transformateur avec prise en compte des fuites	
	magnétiques	355
B.5	Modèles du transformateur triphasé	358
Ann	exe C • Modélisation de la machine synchrone à rotor bobiné	361
C.1	Introduction	361
C.2	Principes physiques	362
	Machine synchrone monophasée	367
C.4	Machine synchrone triphasée	373
C.5	Machine synchrone couplée au réseau	377
Ann	exe D • Modélisation de la machine asynchrone	381
	Introduction	381
D.2	Principe de fonctionnement de la machine asynchrone	382
	D.2.1 Rotor à un seul enroulement	384
	D.2.2 Rotor à deux enroulements	387
	D.2.3 Rotor en rotation	388
D.3	Étude du champ magnétique dans l'entrefer	389
-	D.3.1 Contribution des courants rotoriques à l'induction	
	dans l'entrefer	389
	D.3.2 Flux créé par les enroulements du stator	393

D.4	Modèle équivalent monophasé	393
	D.4.1 Équations des tensions au stator	394
	D.4.2 Modèle équivalent avec deux bobines couplées	395
	D.4.3 Évolution du modèle équivalent vers le modèle « usuel »	396
D.5	Machine asynchrone connectée au réseau électrique	397
Ann	nexe E • Modélisation des lignes et des câbles	399
E.1	Introduction	399
E.2	Modélisation d'une ligne de grande longueur	399
E.3	Modélisation d'une ligne de longueur moyenne	404
E.4	Modélisation d'une ligne courte	405
E.5	Comparaison des modèles en fonction de la longueur de la ligne	406
E.6	Modélisation d'un câble	408
Solu	itions	409
Inde	y.	425