Table des matières

Avan	t-prop	os	11
Cha	pitre 1	• Introduction	19
Part	tie 1 E	Biocontamination et biocorrosion	27
Cha	Chapitre 2 • Les micro-organismes		
2.1	Les ba	ctéries	30
	2.1.1	Altérations provoquées par les bactéries	32
	2.1.2	Inhibition du développement des bactéries	
		sulfato-réductrices	32
2.2	Les ch	ampignons - moisissures	33
	2.2.1	Altérations provoquées par les champignons	34
2.3	Les ac	tinomycètes	36

Cha	pitre 3	• Causes primordiales de developpement des micro-organismes.	37		
3.1	L'eau.		38		
3.2	Les contaminants solides, oxydes métalliques				
3.3	, 1				
Cha	pitre 4	Mécanismes de la biocorrosion	41		
Cha	pitre 5	• Exemples pratiques de biocorrosion	45		
5.1	Au ni	veau de la station	45		
5.2	Const	ratations sur avion	47		
Cha	pitre 6	• Moyens d'eviter la biocorrosion par les micro-organismes	57		
6.1	Maint	tien et propreté des réservoirs d'aéronefs	57		
6.2	Prévention au stade exploitation				
Par	tie 2 T	raitements et protection des réservoirs	61		
Cha	pitre 7	Méthodes de traitements des réservoirs	63		
7.1	Traite	ments préventifs	64		
	7.1.1	Composés du bore	64		
	7.1.2	Additif anti-glace	64		
	7.1.3	Sulfate d'hydroxy-8 quinoléine	65		
	7.1.4	Thymol	66		
	7.1.5	Bichromate de potassium	66		
	7.1.6	Chromate de strontium	67		
7.2	Traite	ments curatifs	67		
	7.2.1	Bichromate de potassium	67		
7.3	Préco	nisations afin de traiter les réservoirs contre la biodétérioration	68		
Cha	pitre 8	• Protection des fonds de réservoirs contre les micro-organismes	71		
8.1	Les pi	gments métalliques chromatés	72		
8.2	Étude	expérimentale	73		
	8.2.1	Systèmes de protection expérimentés	74		
	8.2.2	Réalisation expérimentale	75		
	8.2.3	Caractérisations des paramètres d'essai			
		d'immersion-incubation	77		
		8.2.3.1 Importance des développements de Cladosporium			
		$racin da (C_N)$	78		

	8.2.3.2 Évolution vers un pH acide de la phase H ₂ O (IFP-C4)	81
	8.2.3.3 Tenue des protections	82
	8.2.3.4 Tenue à la corrosion et à la biocorrosion	84
	8.2.3.5 Classement du comportement des systèmes	0 1
	de protection	85
	8.2.4 Comportement de cordons d'étanchéité structurale	
	et des lignes de fixation aux micro-organismes	86
Part	ie 3 Méthodes de détection de la biocontamination	95
Chap	• Situation des méthodologies bioanalytiques	97
Chap	• Synthèse bibliographique de description des méthodes de détection de biocontamination	101
	Méthode microscopique de référence par Microfiltration-Incubation	
10.2		
	10.2.1 Easicult Combi	
	10.2.2 Microtest P	
	10.2.3 Microtest K.	
	Méthode de filtration Milliflex-100	
	ATP-métrie et bioluminescence	
10.5	Microscopie en épifluorescence révélée par fluorochrome	123
Chap	• Compatibilité des méthodes « rapides » de détection de biocontamination avec les carburéacteurs kérosènes	125
11.1	Combustibles endothermiques expérimentés	
	11.1.1 Kérosène-50	
11.0	11.1.2 Carburéacteur JP-10	
	Souches de micro-organismes étudiées	
11.3	Conditions de culture des micro-organismes	
	11.3.1 Moisissures (champignons)	
/	11.3.2 Bactéries aérobies	128
11.4	Compatibilité des méthodes « rapides » par lames immergées avec le kérosène-50 (JP-1)	
11.5	Compatibilité de l'ATP-métrie avec le kérosène-50 (JP-1)	130
11.6	Synthèse des travaux de compatibilité des méthodes de détection	
	avec les carburéacteurs	132

Chap	• Validation des méthodes « rapides » de détection	
	de biocontamination des carburéacteurs kérosènes	
	Préparation d'échantillons de kérosène JP-1 inoculés	
	Réalisation des essais de validation	
	Résultats expérimentaux	
12.4	ATP-métrie de combustible THDCPD-exo (JP-10) inoculé	162
12.5	Synthèse des travaux de validation des méthodes rapides	
	de détection de biocontamination des carburéacteurs	164
Chap	• Synthèse des travaux de compatibilité et de validation	
	des méthodes « rapides » de detection	
	de biocontamination de carburéacteurs	165
Chap	oitre 14 • Optimisation des méthodes « ATP-métrie »	169
14.1	Expérimentations par dilutions d'échantillons de référence	170
	14.1.1 Préparation d'échantillons de kérosène-50 Jet A-1 inoculés	170
	14.1.2 Validation des essais d'optimisation	172
	14.1.2.1 Technique optimisée par Filtration-Brossage	172
	14.1.2.2 Technique simplifiée directe par « immersion »	
	14.1.2.3 Méthode de référence	173
	14.1.3 Réalisation expérimentale	174
	14.1.4 Résultats d'essais	175
	14.1.4.1 Identification ATP-métrique du kérosène	
	à l'état originel	175
	14.1.4.2 Identification ATP-métrique du kérosène inoculé	
	de micro-organismes	175
	14.1.4.3 Identification des degrés de biocontamination	
	par méthode de référence	
14.2	Exploitation des résultats expérimentaux	
	14.2.1 Biocontamination du kérosène à l'état originel	
,	14.2.2 Biocontamination du kérosène inoculé de micro-organismes	
14.3	Réaction de l'ATP-métrie face à des micro-organismes morts	214
Chap	• Conclusions relatives à l'ATP-métrie & bioluminescence	217
Chap	• Corroborations des deux méthodes microbiologiques de détection définissant les traitements des réservoirs	219
Char	oitre 17 • Autre technique ATP-métrique par solution de capture	223

Partio	e 4 Microbiologie du carburéacteur JP-10	227
Chapi	itre 18 • Microbiologie du carburéacteur JP-10	229
18.1	Description du JP-10	230
18.2	Synthèse résumée du JP-10	232
18.3	Disponibilité du JP-10	232
18.4	Carburéacteurs JP-10 étudiés	232
	18.4.1 Koch (États-Unis)	233
	18.4.2 Elf Antar (France), Carburants spéciaux	233
	18.4.3 PCAS (France)	233
18.5	Biocontamination du JP-10 par Filtration-Incubation	234
18.6	Bioanalyses microscopiques du JP-10 à l'état frais	235
18.7	Viabilité des micro-organismes dans le JP-10	235
	18.7.1 Biocontamination par ATP-métrie de carburéacteur JP-10 inoculé	236
18.8	Biocontaminationdu JP-10 PCAS à l'état livraison	246
Partic	e 5 Épilogue	249
Chap	itre 19 • Épilogue	251
Chapi	itre 20 • Bibliographie	265