TABLE DES MATIÈRES

Préface	5
1 – PRINCIPES DE BASE DE LA CINÉTIQUE CHIMIQUE	7
1.1. Introduction	7
Les conventions d'écriture des réactions chimiques	
1.2. Les principes de base de la cinétique chimique	
1.2.1. Vitesse de réaction et équation de vitesse	10
1.2.2. Mécanisme de réaction et réactions élémentaires	
1.2.3. Ordre et molécularité d'une réaction	11
1.2.4. Détermination de l'ordre d'une réaction	15
1.2.5. Dimensions des constantes de vitesse	
1.2.6. Les réactions réversibles	
1.2.7. Détermination des constantes de vitesse du premier ordre	20
Problèmes	23
2 – La thermodynamique et la théorie des vitesses	25
2.1. La thermodynamique et ses limites	25
2.2. Concepts généraux de la thermodynamique	26
2.2.1. États du système	26
2.2.2. Un «processus» est un événement au cours duquel	
une propriété du système change	27
2.3. Les lois de la thermodynamique	
2.3.1. Loi de conservation de l'énergie	
2.3.2. La définition de l'entropie et du critère de spontanéité	
2.3.3. La définition statistique de l'entropie	
2.3.4. L'entropie dans les systèmes vivants et les réactions couplées	
2.3.5. L'énergie de GIBBS	32
2.3.6. Le potentiel chimique :	22
L'énergie de GIBBS d'un soluté dépend de sa concentration	
	JIBBS34
2.4. Relations entre la thermodynamique et la cinétique :	27
les notions d'équilibre et d'état stationnaire	
2.4.1. Distinction entre vitesse initiale et vitesse nette	
2.4.3. L'état stationnaire	
	,

2.5. L'influence de la température sur les constantes de vitesse	45
2.5.1. Le profil réactionnel	45
2.5.2. L'équation d'Arrhenius	
2.5.3. Théorie de collision élémentaire	
2.5.4. Théorie de l'état de transition - Théorie de la vitesse absolue	
2.5.5. Les enzymes stabilisent l'état de transition de la réaction	53
Problèmes	54
3 – Introduction à la cinétique enzymatique	
S – INTRODUCTION À LA CINETIQUE ENZYMATIQUE RÉACTIONS À UN SUBSTRAT ET UN PRODUIT	55
3.1. Historique	
3.1.1. La découverte des enzymes	
3.1.2. Les premières études de la cinétique enzymatique	
et le développement du concept du complexe enzyme-substrat	57
3.1.3. Les travaux de Victor HENRI	57
3.1.4. Les problèmes rencontrés par HENRI.	
3.1.5. La notion de site actif et le mécanisme d'action des enzymes	
•	
3.2. Description cinétique des réactions enzymatiques dans des conditions d'équilibre	67
3.2.1. La première équation cinétique : l'équation de HENRI	
3.2.2. Le traitement de MICHAELIS et MENTEN	
	/0
3.3. Description cinétique des réactions enzymatiques dans des conditions d'état stationnaire	72
3.3.1. Les premières utilisations de la notion d'état stationnaire	
3.3.2. Le traitement de BRIGGS et HALDANE	
3.3.3. L'équation de MICHAELIS et MENTEN	
3.3.4. Analyse de la courbe définie par l'équation de MICHAELIS et MENTEN	
3.3.5. Autres formes de l'équation de MICHAELIS et MENTEN	
3.3.6. L'équilibre comme un cas particulier de l'état stationnaire	
3.3.7. Validité et limites de l'hypothèse de l'état stationnaire	
3.4. Unités de l'activité enzymatique	
3.5. Méthodes d'analyse des données cinétiques	82
3.5.1. Le graphique de <i>v</i> en fonction de [A]	
3.5.2. Différentes méthodes de transformation linéaire	
3.6. Les réactions réversibles	
3.6.1. L'équation de vitesse du mécanisme réversible simple	96
3.6.2. L'équation de vitesse du mécanisme en trois étapes : traitement à l'équilibre	
3.6.3. La relation de HALDANE	
3.6.4. L'équation de vitesse du mécanisme en trois étapes : cas à l'état stationnaire	
3.6.5. Utilisation du profil d'énergie de GIBBS	
3.6.6. Les enzymes unidirectionnels	104
3.7. Inhibition par le produit	107
3.8. Intégration des équations de vitesse pour les réactions enzymatiques	108
3.8.1. Équation de MICHAELIS et MENTEN sans inhibition par le produit	
3.8.2. Inhibition par le produit	109

TABLE DES MATIÈRES	457
3.8.3. Mesures précises des vitesses initiales	
3.8.4. Les décours complets dans d'autres cas	114
Problèmes	115
4 – Aspects pratiques des études cinétiques	119
4.1. Mesure de l'activité enzymatique	119
4.1.1. Méthodes continues et discontinues de mesure	
4.1.2. Estimation de la vitesse initiale	
4.1.3. Amélioration de la linéarité d'un décours de réaction	
4.1.4. Les systèmes couplés	
4.2. Détection de l'inactivation d'un enzyme	
4.3. Choix des conditions expérimentales	
4.3.1. Choix des concentrations de substrat	
4.3.2. Choix du pH , de la température et des autres conditions	
4.3.3. Réplication des mesures	
4.4. Traitement des équilibres ioniques	
Problèmes	
	120
5 – INHIBITION ET ACTIVATION DES ENZYMES	
5.1. Inhibition réversible et irréversible	
5.1.1. Les poisons de la réaction catalytique	
5.1.2. Analyse de la vitesse d'inactivation	
5.1.3. Types d'inhibition réversible	
5.2. Inhibitions linéaires	
5.2.1. Inhibition compétitive (ou inhibition spécifique)	
5.2.2. Inhibition mixte	
5.2.3. L'inhibition anti-compétitive (inhibition catalytique)	
5.2.4. Résumé des types d'inhibition linéaire	147
5.3. Présentations graphiques des résultats des inhibitions	148
5.4. Relation entre les constantes d'inhibition et la concentration de demi-inhibition	151
5.5. Inhibition par compétition avec un substrat	
5.5.2. Test du déroulement simultané de deux réactions	
5.5.3. Protection par le substrat	
5.6. Activation des enzymes	
5.6.1. Diverses utilisations du terme «activation»	
5.6.2. Activation spécifique	
5.6.3. Activation et inhibition hyperboliques	
5.7. Préparation des expériences d'inhibition	
5.8. Effets inhibiteurs des substrats	
5.8.1. Fixation non-productive	
5.8.2. Inhibition par le substrat	169

	5.9. La modification d'un groupe de l'enzyme	
	comme un moyen d'identifier les groupes essentiels	171
	Problèmes	174
6	- RÉACTIONS À PLUSIEURS SUBSTRATS	170
0	6.1. Introduction	
	6.2. Classification des mécanismes	
	6.2.1. Les mécanismes à complexe ternaire	
	6.2.2. Mécanismes à enzyme modifié	
	6.2.3. Comparaison entre la classification chimique et la classification cinétique	
	6.2.4. Représentation schématique des mécanismes	
	6.3. Dérivation des équations de vitesse à l'état stationnaire	
	6.3.2. La méthode de KING et ALTMAN	
	6.3.3. La méthode de Wong et HANES	
	6.3.4. Modifications de la méthode de KING et ALTMAN	
	6.3.5. Réactions renfermant des étapes à l'équilibre	
	6.3.6. Analyse des mécanismes par inspection	
	6.3.7. Dérivation des équations de vitesse par ordinateur	
	•	
	6.4. Les équations de vitesse	
	6.4.1. Mécanisme de type ordonné à complexe ternaire	
	6.4.2. Mécanisme de type aléatoire à complexe ternaire	
	6.4.3. Mécanisme à enzyme modifié	
	6.4.4. Calcul des constantes de vitesse à partir des paramètres cinétiques	
	6.5. Les mesures de vitesse initiale en absence de produit	210
	6.5.1. Signification des paramètres	
	6.5.2. Paramètres apparents de MICHAELIS et MENTEN	
	6.5.3. Les graphiques primaires pour les mécanismes à complexe ternaire	213
	6.5.4. Les graphiques secondaires	
	6.5.5. Graphiques pour les mécanismes à enzyme modifié	216
	6.6. Inhibition par le substrat	217
	6.6.1. Pourquoi y a-t-il une inhibition par le substrat?	217
	6.6.2. Mécanisme de type ordonné à complexe ternaire	218
	6.6.3. Mécanisme de type aléatoire à complexe ternaire	219
	6.6.4. Mécanisme à enzyme modifié	219
	6.6.5. Valeur diagnostique de l'inhibition par le substrat	220
	6.7. Inhibition par le produit	221
	6.8. Préparation des expériences	223
	6.9. Un exemple simple d'étude d'un enzyme à deux substrats et deux produits :	
	la créatine kinase	
	6.9.1. Application pratique de la mesure des paramètres pour la créatine kinase	
	6.10. Réactions à trois substrats et plus	229
	Problèmes	233

TABLE DES MATIÈRES	459
--------------------	-----

7 – UTILISATION D'ISOTOPES POUR L'ÉTUDE DES MÉCANISMES ENZYMATIQUES	237
7.1. Echange isotopique et effets isotopiques	
7.2. Principes de l'échange d'isotope	
7.3. Echange d'isotopes à l'équilibre	
7.4. Echange d'isotopes dans des mécanismes à enzyme modifié	
7.5. Echange d'isotopes hors équilibre	
7.5.1. Rapports de flux chimiques	
7.5.2. Cinétiques d'isomérisation	
7.5.3. Perturbation par un traceur	249
7.6. La théorie des effets isotopiques cinétiques	
7.6.1. Effets isotopiques primaires	
7.6.2. Effets isotopiques secondaires	
7.6.3. Effets isotopiques sur les équilibres	
7.7. Effets isotopiques primaires sur les cinétiques enzymatiques	
Problèmes	256
8 – Effets de l'environnement sur les enzymes	257
8.1. Effet du pH sur les cinétiques enzymatiques	257
8.2. Les propriétés acide-base	259
8.2.1. Les équilibres d'ionisation	
8.2.2. Les tampons	
8.2.3. Les propriétés acide-base des protéines	
8.2.4. Analyse sur la base des constantes de dissociation des groupes8.2.5. Analyse sur la base des constantes de dissociation moléculaires	
8.2.6. Les fonctions pH de MICHAELIS	
8.2.7. Les courbes en cloche	
8.3. L'effet du pH sur les constantes cinétiques enzymatiques	
8.3.1. Hypothèses sous-jacentes	
8.3.2. La dépendance au pH des paramètres V et V/K_m	
8.3.3. Les paramètres indépendants du pH et leur relation avec les paramètres	
«apparents»	
8.3.4. La dépendance au pH de K_m	
8.3.5. Préparation des expériences	279
8.4. lonisation du substrat	280
8.5. Effets complexes du pH	280
8.6. Effets de la température sur les réactions catalysées par des enzymes	
8.6.1. Dénaturation thermique	
8.6.2. L'«optimum» de température	
8.6.3. Application de l'équation d'EYRING aux enzymes	
8.7. Effets de la pression sur les réactions catalysées par des enzymes	
8.7.1. Effets de la pression sur les équilibres et les vitesses de réaction	
8.7.2. Effet de la pression sur les interactions non-covalentes	
0.7.3. Errots de la pression sur les reactions enzymanques	

8.8. Effets isotopiques du solvant	289
Problèmes	
9 – Contrôle de l'activité enzymatique	293
9.1. Fonction des interactions coopératives et allostériques	
9.1.1. Cycles futiles	
9.1.2. Mécanismes de régulations de l'activité enzymatique	
9.1.3. Inadéquation de l'équation de MICHAELIS et MENTEN	
pour décrire les mécanismes de régulation	296
9.1.4. La coopérativité	297
9.1.5. Interactions allostériques	298
9.2. Le développement de modèle expliquant la coopérativité	299
9.2.1. L'équation de HILL	299
9.2.2. Un autre index de coopérativité	
9.2.3. Hypothèse d'un équilibre de fixation dans les cinétiques coopératives	301
9.2.4. L'équation d'ADAIR	
9.2.5. Définitions mécaniques et opérationnelles de la coopérativité	307
9.3. Ajustement induit	309
9.4. Modèles modernes de coopérativité	311
9.4.1. Le modèle symétrique de MONOD, WYMAN et CHANGEUX	
9.4.2. Le modèle séquentiel de Koshland, Némethy et Filmer	
9.4.3. Modèles association-dissociation	324
9.5. Coopérativité cinétique	325
Problèmes	
10 – Cinétiques des systèmes multi-enzymatiques	329
10.1. Les enzymes dans leur contexte biologique	
10.2. Analyse du contrôle métabolique	
10.3. Elasticités	
10.3.1. Définition de l'élasticité.	
10.3.2. Propriétés communes des élasticités	
10.3.3. Les cinétiques enzymatiques vues à travers l'analyse du contrôle	
10.3.4. Considération des vitesses et des concentrations	
comme des effets et non comme des causes	337
10.4. Les coefficients de contrôle	340
10.5. Relations d'addition	
10.6. Relations entre les élasticités et les coefficients de contrôle de flux	
10.6.1. Propriétés de connectivité	
10.6.2. Les coefficients de contrôle dans une voie à trois étapes	
10.6.3. Expression des relations d'addition et de connectivité	
sous une forme matricielle	348
10.6.4. Relation de connectivité pour un métabolite non-impliqué	
dans une boucle de contrôle rétroactif	348

	TABLE DES MATIÈRES	461
	10.6.5. Le coefficient de contrôle de flux d'un enzyme	
	pour le flux au travers de sa propre réaction	349
	10.7. Les coefficients de réponse : la réponse partagée	350
	10.8. Contrôle et régulation	351
	10.9. Mécanismes de régulation	
	10.9.1. Canalisation de métabolites	
	10.9.2. Cascades d'enzymes convertibles	357
	10.9.3. Le rôle métabolique de l'adénylate kinase	359
	Problèmes	362
11 -	- Les réactions rapides	365
	11.1. Les limitations des mesures à l'état stationnaire	365
	11.1.1. Phases transitoires	
	11.1.2. Etapes «lentes» et «rapides» dans les mécanismes enzymatiques	366
	11.1.3. Ambiguïtés dans l'analyse à l'état stationnaire de systèmes	267
	impliquant des isomérisations d'intermédiaires	
	11.2. Libération du produit avant la fin de cycle catalytique	370
	11.2.2. Titrage du site actif	
	11.3. Les techniques expérimentales	
	11.3.1. Les classes de méthodes	373
	11.3.2. Les méthodes de flux continu	
	11.3.3. Les méthodes de stopped-flow	
	11.3.4. Le quenched flow	377
	11.3.5. Les méthodes de relaxation	
	11.4. La cinétique des phases transitoires	
	11.4.1. Les systèmes hors d'équilibre	
	11.4.2. Simplification de mécanismes complexes	
	Problèmes	392
	– Estimation des constantes cinétiques	
	12.1. L'effet des erreurs expérimentales dans l'analyse des données cinétiques	393
	12.2. Ajustement sur une équation de MICHAELIS et MENTEN	
	par la méthode des moindres carrés	
	12.2.1. Introduction d'erreurs dans l'équation de MICHAELIS et MENTEN	
	12.2.2. Estimations de V et de K_m	390
	12.3. Aspects statistiques du graphique linéaire direct	400
	et les statistiques à distribution libre	400
	12.3.2. Application au graphique linéaire direct	

CINÉTIQUE ENZYMATIQUE

12.3.4. Insensibilité vis-à-vis d'observations exceptionnelles	
12.4. Précision des estimations des paramètres cinétiques	
12.5. Graphiques des résidus et leurs utilisations	411
Problèmes	416
SOLUTIONS DES PROBLÈMES ET COMMENTAIRES	419
Références	427
INDEX	443
TABLE DES MATIÈRES	455