ELSEVIER

Contents lists available at SciVerse ScienceDirect

Scandinavian Journal of Pain

journal homepage: www.ScandinavianJournalPain.com

Editorial comment

Pressure pain algometry – A call for standardisation of methods

Audun Stubhaug*

Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital and Faculty of Medicine, University of Oslo, Pb. 4950 Nydalen, 0424 Oslo, Norway

Algometry has been used in both experimental pain research and in clinical research for many years. It has been shown to be useful for the study of regional analgesia [1]. Pressure algometry has been shown to be sensitive for the analgesic effect of opioids [2], corticosteroids [3], and paracetamol [4] in healthy volunteers.

Algometry is also useful in the clinic. Nikolajsen and co-workers found that pressure pain thresholds predicted stump pain and phantom pain after amputation [5].

Pressure pain (algometry) is particularly useful in musculoskeletal pain [6] and bone pain [7] and is diagnostic for fibromyalgia [8]. Pain threshold and tolerance assessed with a specially designed algometer were significantly associated with average measures of clinical pain in fibromyalgia [9], chronic fatigue [9], and rheumatoid arthritis [10].

The nociceptors involved in pressure pain are probably different for short-lasting dynamic pressure and tonic pressure for 120 s [11].

One recurring discussion has been on the choice of outcome: pain threshold versus pain tolerance or pain ratings to painful stimuli? This has been examined in healthy volunteers by Lacourt et al. and is presented in the present issue of the Scandinavian Journal of Pain [12]. The objective of the study was to investigate the reliability (test-retest) and the interrelationship between pressure-pain threshold (PPth), pressure-pain tolerance, and pressure-pain ratings. They conclude that PPth, subjective ratings of moderate intensity suprathreshold stimuli, and subjective ratings of the maximum intensity are distinct aspects of pain responsiveness. They recommend including a measure of each of these three dimensions of pain when assessing pressure pain responsiveness. They also found good test-retest reliability between second and third pressure pain threshold measurement. We should, however, bear in mind that this does not prove such stability over time (from day to day). Last, the authors recommend that when it is desirable to collapse pressure pain threshold on several body points into one mean value, they suggest to average over bilateral body points only, since individual thresholds vary significantly between body sites in the same individual.

Learning from this and previous studies, we might find pressure algometry useful both in future pain research [13] and in clinical evaluation of painful conditions. Equipment and test algorithms should be better standardised. Lacourt and colleagues used an examiner dependent method that only works well in much trained examiners [12]. Computer-controlled equipment that eliminates examiner-bias has been developed [14–16], and this is probably necessary to fully exploit the potential of pressure pain testing.

References

- [1] Brennum J, Petersen KL, Horn A, Arendt-Nielsen L, Secher NH, Jensen TS. Quantitative sensory examination of epidural anaesthesia and analgesia in man: combination of morphine and bupivacaine. Pain 1994;56:327–37.
- [2] Cambareri JJ, Afifi MS, Glass PS, Esposito BF, Camporesi EM. A-3665, a new shortacting opioid: a comparison with alfentanil. Anesth Analg 1993;76:812–6.
- [3] Stubhaug A, Romundstad L, Kaasa T, Breivik H. Methylprednisolone and ketorolac rapidly reduce hyperalgesia around a skin burn injury and increase pressure pain thresholds. Acta Anaesthesiol Scand 2007;51:1138–46.
- [4] Romundstad L, Stubhaug A, Niemi G, Rosseland LA, Breivik H. Adding propacetamol to ketorolac increases the tolerance to painful pressure. Eur J Pain 2006;10:177–83.
- [5] Nikolajsen L, Ilkjaer S, Jensen TS. Relationship between mechanical sensitivity and postamputation pain: a prospective study. Eur J Pain 2000;4:327–34.
- [6] Petersen KL, Brennum J, Olesen J. Evaluation of pericranial myofascial nociception by pressure algometry. Reproducibility and factors of variation. Cephalalgia 1992;12:33–7.
- [7] Finocchietti S, Andresen T, Arendt-Nielsen L, Graven-Nielsen T. Pain evoked by pressure stimulation on the tibia bone – influence of probe diameter on tissue stress and strain. Eur J Pain 2011 [Epub ahead of print].
- [8] Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB, Yunus MB. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res 2010;62:600–10.
- [9] Geisser ME, Gracely RH, Giesecke T, Petzke FW, Williams DA, Clauw DJ. The association between experimental and clinical pain measures among persons with fibromyalgia and chronic fatigue syndrome. Eur J Pain 2007;11:202–7.
- [10] Lee YC, Chibnik LB, Lu B, Wasan AD, Edwards RR, Fossel AH, Helfgott SM, Solomon DH, Clauw DJ, Karlson EW. The relationship between disease activity, sleep, psychiatric distress and pain sensitivity in rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther 2009;11:R160.
- [11] Schmidt R, Schmelz M, Torebjörk HE, Handwerker HO. Mechano-insensitive nociceptors encode pain evoked by tonic pressure to human skin. Neuroscience 2000:98:793–800.
- [12] Lacourt TE, Houtveen JH, van Doornen LJ. Experimental pressure-pain assessments: test-retest reliability, convergence and dimensionality. Scand J Pain 2012;3:31-7.
- [13] Stubhaug A. Clinical trials for acute and chronic pain. In: Rice AS, Warfield C, Justins D, Eccleston C, editors. Clinical pain management. London: Arnold; 2002. p. 449–59.
- [14] Petzke F, Gracely RH, Park KM, Ambrose K, Clauw DJ. What do tender points measure? Influence of distress on 4 measures of tenderness. J Rheumatol 2003;30:567–74.
- [15] Polianskis R, Graven-Nielsen T, Arendt-Nielsen L. Computer-controlled pneumatic pressure algometry a new technique for quantitative sensory testing. Eur J Pain 2001;5:267–77.
- [16] Jespersen A, Dreyer L, Kendall S, Graven-Nielsen T, Arendt-Nielsen L, Bliddal H, Danneskiold-Samsoe B. Computerized cuff pressure algometry: a new method to assess deep-tissue hypersensitivity in fibromyalgia. Pain 2007;131:57–62.

DOI of refers to article: 10.1016/j.sjpain.2011.10.003.

^{*} Tel.: +47 23070000/23073696; mobile: +47 90029432; fax: +47 23073690. E-mail address: audun.stubhaug@medisin.uio.no