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Background and purpose: The use of laboratory animals in pain research has powerfully contributed to
our detailed understanding of the physiological mechanisms of pain. Animal models also represent an
essential tool to screen and select novel drug molecules with potentially analgesic properties. Despite of
the inevitable input of laboratory animal trials, recent studies have shown that animal pain models have
repeatedly failed to predict clinical analgesic efficacy and adverse side effects of potential drug molecules
in human pain patients. This paper provides a review of the laboratory animal models of OA, which have
been developed to test efficacy of novel analgesics. The paper also presents spontaneous OA in canine
veterinary patients, and methods to observe chronic pain in nonverbal dogs.
Methods: PubMed data base was searched as a reference list to locate most relevant articles. A number of
118 articles including 4 reviews were located. Web pages of 4 establishments and 2 private organizations
were also accessed.
Results: The clinical expression and pathogenesis of naturally occurring OA in dogs is considered an anal-
ogous disease that occurs in humans, including pain and lameness. OA may occur in any joint in dogs as
well as in humans. Primary idiopathic OA in dogs is rare, but certain breeds may be predisposed to it.
For the most part, canine OA is considered secondary to acquired or congenital musculoskeletal disor-
ders. Concomitant factors, such as aging and obesity, likely accelerate progression. However, mechanical
factors appear to predominate in the etiopathogenesis of canine spontaneous OA. Both subjective (vali-
dated questionnaire) and objective (gait analysis) tools are available to measure OA related pain in dogs.
Information on the prevalence of canine OA is limited, but rough surveys suggest that 11 million dogs
in the United States and 5 million in Europe could suffer from OA. Ethical considerations concerning the
use of privately owned dogs can be resolved by a careful experimental design.
Conclusions: Canine spontaneous OA could serve as a translational animal model that would more closely

mimick clinical OA related pain conditions in humans. Privately owned dogs would make a solution to fix
the gap between animal pain models and clinical trials when testing potential analgesic drug molecules.
Close interdisciplinary cooperation would guarantee that both scientific and ethical intentions would be
achieved.
Implications: The predictability of translational pain research would improve by using privately owned

dogs as chronic pain models when testing novel analgesics.

© 2011 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
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. Introduction

The use of laboratory animals in pain research has powerfully
ontributed to our detailed understanding of the physiological
echanisms of pain [1], including the initiation, maintenance and

ermination of a painful signal. In addition, animal models repre-
ent an essential tool to screen and select novel drug molecules
ith potentially analgesic properties.

. Experiments used to test analgesics in laboratory
nimals

Testing the potency of novel analgesic drug molecules in labo-
atory animals has involved both acute and chronic painful stimuli.
n a classical acute pain assay, a noxious stimulus is applied to
n extreme body part where a simple withdrawal response can
e detected and scored [2]. Both the latency to the response and
he response threshold are recorded in these trials. Distinguishing
etween unconscious spinal withdrawal reflexes [2] and conscious
otor responses that involve supraspinal affective components

3] is vital when recording responses or their latencies. In inflam-
atory pain experiments, the noxious stimulus is induced by

n algogenic chemical, such as formalin [4], carrageenan [5] and
reund’s adjuvant [5], which are usually administered either subcu-
aneously or intraperitoneally [2]. Mediator-induced pain develops
lowly but endures longer. Instead of an avoidance response, the
ffected animal expresses painful sensations by engaging in specific
ain-related behavior which is associated with both the location of
he discomfort and the species in question. Neuropathic pain mod-
ls are frequently provoked by surgical constriction of a peripheral
erve lesion. Pain behaviors in neuropathic assays vary, the ulti-
ate being self-mutilation [6,7].
When it became evident that simple experimental models

ere not analogous enough to complex clinical pain syndromes,
esearchers introduced complete disease models, such as cancer
ain [8], post-operative pain [9–11], and surgically induced OA pain
12,13].

. Challenges of translational pain research in laboratory
nimals

Despite of the inevitable input of animal trials in pain research,
ecent studies have shown that animal pain models have repeatedly
ailed to predict clinical analgesic efficacy and adverse side effects
f potential drug molecules in human pain patients [1,14]. Sev-
ral comprehensive reviews have covered the less satisfactory face
alidity of animal pain models [15–20], referring to the fact that the
esemblance of symptoms of the pain tests are irrelevant to the clin-
cal condition. Developing animal models that more closely mimick
linical pain conditions has become important in translational pain
esearch [14,16].

. OA models in laboratory animals

The term OA does not describe a single elusive disease, but
ather it refers to a number of related and overlapping disorders

chondrocytes, the extracellular matrix, and subchondral bone [21].
The etiology of OA is largely unknown, but is most likely multifacto-
rial [22]. In patients, OA diseases result in a common joint pathology
[12] characterized by degeneration of the articular cartilage [23];
other affected articular tissues may also include subchondral bone,
synovial fluid, synovial membranes, and surrounding periarticu-
lar soft tissues [22,24]. Because arthritis or OA is the most frequent
musculoskeletal disorder [25,26], a variety of either induced or nat-
urally occurring animal models of OA [27] have been developed to
test the therapeutic potency of drugs [28].

Induced models in mice [29], rats [12,13,30], guinea pigs [31],
rabbits [28,32], cats [33], dogs [34–36], sheep [37], and goats [23]
focus mainly on the knee joint. Impaired functioning of the knee
joint has been induced by surgical intervention [12,33,34,37], by
chemically injecting an irritant into the joint [12,38], by blunt
trauma [32], or by mechanical load [29,31,39], thus leading to an
adaptive response which modifies the articular cartilage structure
and contributes to OA. Because the knee joint is the most common
target joint affected by OA in humans [22] this may have favored
the preference of knee joint models. In addition, the knee joint is
of considerable size and is easy to access, thus rendering it suitable
for a model. Other joints have occasionally been added. Simmons
et al. [40] introduced an OA model for the equine metacarpopha-
langeal joint, and genetically modified mouse models of OA are also
currently available [41,42].

All mammals can develop degenerative joint diseases [43]. Nat-
urally occurring OA has been described in mice [44–46], broiler
chickens [47], guinea pigs [48–50], Syrian hamsters [51], non-
human primates [52,53], aging cats [54,55] and dogs [55,56]. Salo
et al. [30] found that chemically induced selective joint denervation
in 2-month-old rats initiated a normal-like developmental process
resulting in OA in the knee joint. The authors proposed that the
loss of neurons with age may have contributed to a spontaneous
developmental process, and therefore classified their OA model as
normally occurring.

On the basis of insufficient data about the pathogenesis of
OA pain, developing experimental models has been difficult [57].
The relevance of most animal models of OA is for the most part
based on histopathological similarities to human disease [28]. This
approach ignores differences in the speed of the degenerative
process between an induced model and a naturally occurring dis-
ease. Most surgically induced models of OA have rapid and strict
cartilage degeneration after manipulation. Whether these models
can explain the pain mechanism of slowly developing clinical OA
remains uncertain [57]. A swift development period also implies
that fewer opportunities for experimental therapeutic assays are
available. Spontaneous models, such as those seen in certain labo-
ratory species and in privately owned dogs and cats, should offer
a better opportunity to study the slowly progressive process that
is characteristic to human OA [28,58], including the track records
of drug-induced modification of disease progression. When Mao
[16] recalled animal models mimicking clinical pain conditions, the
author pushed for dialogues between researchers and clinical prac-
titioners. For unspecified reasons, veterinarians with their animal
patients were excluded from the call for discourse.
here joint affliction and disability are prominent symptoms. In
995, a consensus workshop defined OA diseases as consequences
f both mechanical and biologic events that destabilize the nor-
al coupling of degradation and synthesis of articular cartilage
5. Canine spontaneous OA

Both the clinical expression and pathogenesis of naturally occur-
ring canine hip dysplasia and OA are considered analogous diseases
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hat occur in humans. Progressive and degenerative canine OA
auses notable signs of pain, such as lameness and physical disabil-
ty [56,59], rendering affected dogs reluctant to perform normal
ctivities [60]. Pain and lameness may be acute or chronic [60,61],
nd OA may occur in any joint in dogs [55] as well as in humans
22].

Primary idiopathic OA in dogs is rare [61,62], but certain breeds
ay be predisposed to it [60]. For the most part, canine OA is consid-

red secondary to acquired or congenital musculoskeletal disorders
62]. Concomitant factors, such as aging [63] and obesity [64],
ikely accelerate progression. However, mechanical factors appear
o predominate in the etiopathogenesis of canine spontaneous OA
58,63].

A diagnosis of OA is based on clinical signs, physical examina-
ions, radiographs, and synovial fluid analyses [61]. The approach to
reating canine OA will vary based on its severity and location [55].

anagement of OA involves a lifelong multimodal approach which
ims primarily to alleviate pain and secondly to improve mobility
59], including activity control, weight management, physical ther-
py, nutritional support, and nutraceuticals [55,61]. Non-steroidal
nti-inflammatory drugs (NSAIDs) are the dominant medical inter-
ention for canine OA-related symptoms [59], and the scientific
iterature provides strong supportive evidence for the use of certain
SAIDs [65]. In the United States, NSAIDs have the largest number
f reported adverse effects in companion animals [66]. In Sweden,
anine specific NSAIDs came on market in the late 1990s. Thereafter
tatistical survival rates of Swedish aging canines have increased
67].

Humans possess genetic risk factors that influence their risk or
ip OA, and which may also affect their outcomes of OA [68], see
lso the review by Valdes and Spector [69]. In medium- and large-
ize dog breeds, recent evidence has shown that hip and elbow
ysplasia-related OA is associated with polygenetically inherited
evelopmental abnormalities [70–72]. In a current paper [73], four
ip dysplasia-associated and two OA-associated single-nucleotide
olymorphisms (SNPs) and nearby candidate genes were identi-
ed in dogs. The SNPs identified included those near known genes
eportedly associated with, or expressed in, OA in humans [74,75].
n addition to pre-clinical drug testing, a canine model could pro-
ide an opportunity to identify more potential genes underlying
atural OA in humans.

. Translational canine model of spontaneous OA

In clinical trials, most measures of treatment efficacy involve
atient-reported outcomes [76]. In non-verbal dogs, this is
nattainable, so recognition of treatment response is a challenge.

n veterinary medicine, the owner of the animal or a veterinarian
r both detect and report the management response. Measures of
A-related outcome in dogs have been validated in blinded, ran-
omized, and placebo-controled trials [77,78]. The Helsinki chronic
ain index developed by Hielm-Björkman et al. [79] was certified
sing veterinarians and owners to assess signs of pain in dogs. The
rocess resulted in the potential use of 11 multi-factorial behavior-
nd locomotion-related questions in the assessing chronic pain in
ogs [80]. A further study [81] concluded that pain-naïve owners
id not perceive signs of chronic pain in their dogs, but the authors
uggested that the owners could learn the detection of signs of
ain through training. That said, the dog owners could nevertheless
etect pain diminish and return after starting and discontinuing
SAIDs, respectively. The canine brief pain inventory [77] used the
ubjective assessment of efficacy of treatments administered by a
rained owner who completed a questionnaire both before and after
he treatment period. The questionnaire was tested in a double-
lind, randomized, placebo-controlled trial and was able to detect
l of Pain 3 (2012) 84–89

improvements in pain scores in dogs with OA treated with NSAID or
placebo. A client-based clinical metrology instrument was initially
validated for the evaluation of canine OA [78]. Validation was based
on a prospective cohort study where the dog owners completed
a questionnaire before a gait analysis on a force platform, which
served as an external standard measure. The authors concluded
that the instrument was worthy of continued investigation.

Gait analysis, measurement of ground reaction forces of each
leg using a force plate, provides a quantitative description of
quadrupedal gait [82]. Gait analysis provides a non-invasive
assessment of lameness beyond subjective evaluation [83]. When
necessary, an intra-articular anesthetic injection could serve to
decouple gait mechanics from pain originating in other organs, such
as the muscles or skeleton [84]. Several studies have established
the use of force platform in gait analysis in healthy dogs of various
breeds [83,85–89] or of a certain breed [90], including comparative
gait analysis of two breeds [91,92]. The trotting gait was more sensi-
tive than the walking gait for differentiation of dogs with low-grade
hind limb lameness [93].

Gait analysis successfully served to detect acute pain in
dogs; pain was provoked by synovitis which was induced by
intra-articularly injected sodium urate crystals [94], or surgical
intervention [82]. Effect of chronic pain on gait was distinguished
in dogs with surgically induced hindlimb lameness [95]. Gait anal-
ysis was also used for detecting the effect of exercise in dogs with
naturally occurring hindlimb OA [96], as well as for evaluating
effect of surgical technique prior to and after reconstructive surgery
on experimental dogs [97], and on veterinary orthopedic patients
[98,99]. The method was also used to confirm the postoperative
efficacy of NSAIDs in privately owned dogs which underwent a
reconstructive cruciate surgery [100]. A three-dimensional kine-
matic canine hind limb model was recently created by adapting
techniques and algorithms developed for humans [101].

Information on the prevalence of canine OA is limited [63], but a
rough survey carried out in the Unites States suggested that approx-
imately 20% of the canine population over 1 year of age suffer from
OA [56]. Quessy [102] found that 30% of all dogs suffered from
OA but the source of the information was not specified. In certain
canine breeds, the prevalence of hip dysplasia ranged from 41% to
73% [103]. In 2007, the American Veterinary Medical Association
announced on its home page [104] that there are 72 million dogs
in the United States. If one-fifth of them are younger than 1 year,
then 11 million dogs in the United States could suffer from OA. This
number includes predisposition to OA in any joint. The Fédération
Cynologique Internationale claims on its web page [105] that in
2009, approximately 35 million dogs lived in Europe. If the preva-
lence of OA in Europe is the same as that in the United States,
then more than 5 million European dogs would be affected by
OA.

7. Ethical considerations

The use of laboratory animals in biomedical research has been
questioned. Sensitive societies have enlisted public opinion in sup-
port of legislation for the protection of animals in biomedical
research. In 2010, the European Union adopted a new direc-
tive [106] to update the 1986 directive on the protection of
animals used for scientific purposes. In the United States, the
Health Research Extension Act of 1985 [107] provides guidelines
for animal use. The aim to reduce the number of animals used
in science is incorporated in both laws. The acceptance of pri-

vately owned animals as translational models would support this
aim.

Pet dogs as scientific objects will per se foreground ethical
inquiries. It is unacceptable to cause detriment or to risk the



Journa

w
i
a
h
U
a
d

c
n
o
h

c
c
i
t
i
a
s
e
o
t
l

a
I
t
i
i
p
o
m
a
i
l
e
d

d
i
a
o
o
p
t
a
m
o
b
b
O
j
f
n
o
m
e
b
r
t
p
t
w
i

T. Animal models and the prediction of efficacy in clinical trials of anal-
O. Vainio / Scandinavian

elfare of privately owned animals. However, potential analgesics
ntended for human use could be tested on pet dogs in the same way
s novel veterinary medicines. The European Medicines Agency
as assigned rules governing medicinal products in the European
nion, including veterinary products [108]; the United States Food
nd Drug Administration has similar regulations [109] for the
evelopment of veterinary products.

As there is a need to fill the gap between basic science and
linical implications [110–112], veterinary patients suffering from
aturally occurring OA could provide the missing linkage. In an
ptimal case, the potential test medicine would be appropriate for
uman and animal consumption.

Scientific proof of the efficacy of an experimental medicine in
anines may request inclusion of a placebo group. This demand
ould prove problematic but a careful experimental design could
nclude a placebo group if a rescue analgesic could be offered in
he event signs of unacceptable pain were observed in the dogs
nvolved. There is no published information on the attitudes of
nimal owners toward medical trials performed on their pets, but
uch owners are aware that debilitating OA may lead to untimely
uthanasia of their pet [113,114]. Anecdotally, decent and caring
wners are known to be favorable to bringing their pets to clinical
rials, which may promise the alleviation of pain for their four-
egged family member.

Pain research carried out on animals mostly lacks discussion
bout the affective modality of pain. The description of pain by the
nternational Association for the Study of Pain (IASP) Subcommit-
ee on Taxonomy [115] relates to pain in humans. The IASP special
nterest group for the study of pain in animals is designated to pain
n non-human species [116]. In veterinary medicine pain is not
recisely defined. The American College of Veterinary Anesthesiol-
gists has aligned itself with a declaration that an individual animal
ay or may not experience pain in response to nociception [117];

nd further, that it is difficult to compare the experience of pain
n animals to that in people. Molony and Kent [118] used the fol-
owing working definition: animal pain is an aversive sensory and
motional experience representing an awareness by the animal of
amage or threat to the integrity of its tissues.

The research community does not share exclusive scientific evi-
ence of the affective modality of non-human pain. However, there

s still less evidence of its absence, at least in mammals. In animals,
ffective dimension of pain sense most probably differs from that
f humans. Although different, some kind of affective component
f non-human pain would add a new element to the late-phase
reclinical testing of medical candidates. Poole et al. [84] suggested
hat the emotional component of pain should be considered in pain
ssessment in preclinical laboratory animal models in the treat-
ent studies of OA. The authors remind that the affective modality

f OA pain in laboratory animals has no standardized clinical tests
ut they indicated that such a test should be developed using
ehavioral output. For pet dogs suffering from naturally occurring
A, validated methods of pain recognition do exist, including sub-

ective (dog owner, veterinarian) [77–81] and objective (vertical
orce analysis) measures [82,83] but the methods do not discrimi-
ate the emotional component of pain. In clinical trials carried out
n veterinary patients, both sensory-discriminative and affective-
otivational modalities of pain could be distinguished in a careful

xperimental design where behavioral methods would be com-
ined to neurophysiological tools, such as electroencephalographic
ecording [119]. Dogs have demonstrated special social and cogni-
ive skills [120,121] that have developed through the domestication
rocess. The close coevolution of dogs with humans has improved

he interspecies communicative abilities of dogs [122–124], which
ould facilitate the objective detection of affective modality of pain

n this special non-human species.
l of Pain 3 (2012) 84–89 87

8. Conclusions

When improving the predictability of translational pain
research, canine veterinary patients offer benefits over other mod-
els. Firstly, trials in animals with naturally slowly progressive and
degenerative OA would increase the predictability of the model,
and could therefore improve the predictive veracity for drug candi-
date selection. Secondly, in addition to their special coevolutionary
character, dogs share both their living environment and way of
life with humans, which make them the closest animal model to
humans. Thirdly, there are more than 5 million OA-defected dogs
in Europe and 11 million in the United States, thus ensuring that
the number of pet dogs available is sufficient to perform controlled
blinded randomized clinical trials within a reasonable time sched-
ule. Fourthly, the inclusion of privately owned dogs in analgesic
drug development programs would be a win–win situation for both
parties.

It is difficult to find any serious objection to why we should not
expand animal trials to include privately owned animals. Can we
afford to refuse the use of pet dogs as a model in translational pain
research?
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