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ABSTRACT

Background and purpose: A noxious stimulus does not necessarily cause pain. Nociceptive signals arising
from a noxious stimulus are subject to modulation via endogenous inhibitory and facilitatory mechanisms
as they travel from the periphery to the dorsal horn or brainstem and on to higher brain sites. Research
on the neural structures underlying endogenous pain modulation has largely been restricted to animal
research due to the invasiveness of such studies (e.g., spinal cord transection, brain lesioning, brain
site stimulation). Neuroimaging techniques (e.g., magnetoencephalography (MEG), positron emission
tomography (PET) and functional magnetic resonance imaging (fMRI)) provide non-invasive means to
study neural structures in humans. The aim is to provide a narrative review of neuroimaging studies
related to human pain control mechanisms.
Methods: The approach taken is to summarise specific pain modulation mechanisms within the
somatosensory (diffuse noxious inhibitory controls, acupuncture, movement), affective (depression,
anxiety, catastrophizing, stress) and cognitive (anticipation/placebo, attention/distraction, hypnosis)
domains with emphasis on the contribution of neuroimaging studies.
Results and conclusions: Findings from imaging studies are complex reflecting activation or deactivation
in numerous brain areas. Despite this, neuroimaging techniques have clarified supraspinal sites involved
in a number of pain control mechanisms. The periaqueductal grey (PAG) is one area that has consistently
been shown to be activated across the majority of pain mechanisms. Activity in the rostral ventrome-
dial medulla known to relay descending modulation from the PAG, has also been observed both during
acupuncture analgesia and anxiety-induced hyperalgesia. Other brain areas that appear to be involved
in a number of mechanisms are the anterior cingulate cortex, prefrontal cortex, orbitofrontal cortex and
nucleus accumbens, but their exact role is less clear.
Implications: Neuroimaging studies have provided essential information about the pain modulatory path-
ways under normal conditions, but much is still to be determined. Understanding the mechanisms of pain
control is important for understanding the mechanisms that contribute to failed pain control in chronic
pain. Applying fMRI outside the brain, such as in the trigeminal nucleus caudalis of the spinotrigemi-
nal pathway and in the dorsal horn of the spinal cord, and coupling brain activity with activity at these
sites may help improve our understanding of the function of brain sites and shed light on functional
connectivity in the pain pathway.

© 2011 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Pain research has advanced greatly since Descartes [1] made
the first documented attempt to understand pain. A noxious stim-
ulus was argued to activate the brain and signal pain in a single
line-labelled fashion. It is now obvious that pain processing is far
more complex. A noxious stimulus does not necessarily cause pain.
Nociceptive signals travelling from the periphery to the dorsal
horn or brainstem in response to a noxious stimulus are subject
to modulation via a number of endogenous inhibitory and facil-
itatory mechanisms before they transcend to higher brain sites
[2]. Dysfunctions in inhibitory control or activation of facilitatory
mechanisms may, at least in part, explain chronic pain condi-
tions such as complex regional pain syndrome (CRPS), migraine,
fibromyalgia and musculoskeletal pain conditions [3-6]. A thor-
ough understanding of pain modulatory mechanisms may thus be
animportant step towards developing more effective management.
Currently chronic pain conditions are notoriously difficult to man-
age successfully.

In healthy humans, research into endogenous pain modulation
has mostly involved some form of noxious stimulation of the skin,
muscle or viscera (e.g., by mechanical, electrical, ischemic, chem-
ical or thermal stimulation, or by subcutaneous or intramuscular
injections of pain-inducing or inflammatory compounds such as
hypertonic saline, glutamate or capsaicin). Also more invasive tech-
niques, such as rectal balloon distension, have been performed.
The neuro-chemical mechanisms underlying pain responses have
been investigated by combining such studies with the adminis-
tration of neurotransmitter/neuropeptide agonists or antagonists
and assessing the effects of these compounds on pain percep-
tion. Apart from studies on patients with different forms of spinal
cord lesions or brain injuries, research on the neural structures
underlying pain modulation have largely been restricted to animal
research due to the invasive measures available for such stud-
ies (e.g., spinal cord transection, brain lesioning, direct brain site
stimulation). The emergence of neuroimaging techniques such as
magnetoencephalography (MEG), positron emission tomography
(PET) and functional magnetic resonance imaging (fMRI) has cre-
ated opportunities to study the neural structures involved in pain
modulation in humans. Such work suggests that the thalamus,
primary somatosensory cortex (SI), secondary somatosensory cor-
tex (SII), insula, forebrain (e.g., prefrontal cortex), amygdala and
anterior cingulate cortex (ACC) are the primary brain sites active
during an acute pain experience. Together these areas have come
to be termed the ‘pain neuromatrix’ [7-9], although some debate
surrounds the idea of a pain network. The thalamus, SI, SII and
the posterior parts of insula are believed to underlie the sensory-
discriminatory experience of pain while the amygdala, the ACC

and the anterior parts of insula are thought to be involved in the
affective-motivational components of pain, and prefrontal cortex
(PFC) in the cognitive-evaluative aspect of pain [10]. Additional
brain sites may be active depending on the endogenous pain con-
trol mechanisms put into play. In particular, the periaqueductal
grey (PAG) and the rostral ventromedial medulla (RVM) are thought
to be involved in descending pain modulation via the so-called
PAG-RVM network [11]. This paper describes the current under-
standing of some of the most studied pain control mechanisms
from a neuroimaging point of view. Somatosensory, affective and
cognitive factors shape both the quality and the magnitude of
the pain experience. The approach taken is to provide a narrative
review of specific pain modulation mechanisms within these three
domains.

2. Modulation by somatosensory factors

2.1. Diffuse noxious inhibitory controls

Various noxious stimuli (e.g., thermal, mechanical, electrical,
ischemic and chemical) have been shown to produce remote anal-
gesia in humans through what has been referred to as the ‘pain
inhibits pain’ principle [12-19]. The effect is usually demonstrated
by the inhibition of an initial pain by a second pain placed in an
area remote from the initial pain. Animal studies suggest that nox-
ious stimulation inhibits activity in spinal [20-24] and trigeminal
wide dynamic range neurons [25-27] located outside the seg-
mental dorsal horn excited by the stimulation. Such effects have
been termed diffuse noxious inhibitory controls (DNIC) [28]. In
rats, lesion studies have shown that a supraspinal loop [20,23,29],
emanating from subnucleus reticularis dorsalis in caudal medulla
underlies the response [30-32], and rodent studies have impli-
cated many neurotransmitter systems in the DNIC effect (i.e.,
serotoninergic, opioidergic, dopaminergic and neurokinergic sys-
tems) [33-39].

In humans, only a limited number of studies have investigated
the neural structures of DNIC. One fMRI study found decreased
activity in pain-related brain sites, such as SI, ACC, PFC and amyg-
dala, during analgesia to electric shock in the right ankle produced
by painful cold water immersion of the left foot [40]. The counter-
irritation stimulus (i.e., noxious cold water stimulation of the left
foot) produced sustained activation in SI, ACC, anterior insula
(aINS), PFC, and orbitofrontal cortex (OFC) as well as the mid-
brain (PAG area) and the pons, consistent with activation of the
‘pain neuromatrix’ (SI, ACC, aINS, PFC) and descending modula-
tion of spinal nociceptive activity (PAG, OFC) [40]. The reduction of
phasic pain activity in ACC, PFC and amygdala during DNIC sug-
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gests the release of endogenous opioids at these sites [40,41].
Activity in the ipsilateral OFC was specifically related to the
extent of analgesia and covaried with amygdala activity which
could suggest a cortico-amygdaloid regulation of opioid release
[40,41].

Another study reported bilateral activation of SI, ACC (Brodman
area 24’ (BA24) and 32’ (BA32)) and PFC during reduction of pain
to rectal balloon distension following a similar cold pressor task
[42], consistent with activation of the ‘pain neuromatrix’. These
areas have connections to the PAG and the RVM [43,44]. Taken
together with the previous study, one may thus speculate whether
the PAG-RVM network [11] is activated and responsible for the
pain reductions seen during DNIC activation. Reduced activation
was present in anterior and posterior insula, the medial thalamus
and the PAG which, according to the authors, may reflect the pro-
motion of inhibitory feedback loops [42]. Unlike in the earlier study
[40], the OFC was not activated.

A recent fMRI study using cold pressor stimulation of the right
leg to reduce pain to phasic heat in the left arm also suggests the
involvement of the PAG-RVM network [45]. The study found reduc-
tions in areas thought to be related to pain perception, such as the
right (contralateral) thalamus, bilateral SII, anterior and posterior
insula, the cingulate cortex, bilateral amygdala and the medulla,
during reduced pain (DNIC). Greater analgesia in the arm correlated
with reduced activity in right thalamus, left insula, dorsolateral
PFC, and the dorsal part of medulla. Naloxone, an opioid antago-
nist, reduced the strength of the correlations between analgesia
and areas of the insula, dorsolateral PFC and medulla, but did not
completely eliminate the correlations. Naloxone also reduced the
DNIC activation of SII, amygdala, PAG/midbrain, and the OFC. This,
and the finding that naloxone did not affect the subjective expe-
rience of pain, suggests that the PAG-opioidergic system plays an
indirect role in DNIC. Furthermore, the study found enhanced cou-
pling between subgenual ACC (sACC) and the PAG/midbrain, and
between sACC and the left amygdala, as well as between sACC
and the hypothalamus, and between sACC and the medulla, dur-
ing DNIC. The strength of the couplings correlated positively with
the extent of analgesia, and was diminished by naloxone (for the
coupling between sACC and the PAG/midbrain, and the sACC and
the left amygdala), suggesting a pain modulatory role of the ACC
during DNIC.

Studies on the neural structure of DNIC in humans thus collec-
tively show that, during DNIC, activity in brain areas underlying
pain perception is reduced (e.g., SI, ACC, PFC, amygdala, insula,
thalamus). The studies furthermore suggest that the PAG-RVM
network and the ACC may be involved in producing the remote
pain inhibitions. However, as mentioned by some of the authors
[45], activation of the PAG and other sites during DNIC scenar-
ios may reflect the simultaneous activation of other pain control
mechanisms that are difficult to control for, such as stress-induced
analgesia (e.g., the PAG-RVM network [46], see Section 3.4),
and attentional shifts (e.g., the ACC [47], see Section 4.2). Fur-
thermore, activation of the caudal medulla, thought to underlie
DNIC in animals, was not demonstrated in either of the human
fMRI-DNIC studies, possibly because the area of caudal medulla
involved in DNIC (the subnucleus dorsalis reticularis) is a very small
region difficult to image during fMRI [40]. More research into the
neuroanatomical structures involved in DNIC in humans is thus
required in order to clarify the role of brain sites in the human
DNIC response.

2.2. Acupuncture
Similar to the analgesia produced by noxious stimulation,

acupuncture can reduce pain [48]. Whether acupuncture anal-
gesia is more effective than sham acupuncture (i.e., placebo) is,

nonetheless, under debate [49,50]. In electrical acupuncture, both
stimulation of AB-afferents and AS-fibers induce analgesia [51], but
stimulation of AS-fibers appears to produce a more potent analgesic
effect [52-54]. Spinal gating, i.e., competition between CNS input
from the painful region (i.e., from Ad- or C-fibers) versus that from
non-painful acupoints (carried by AB-fibers), may contribute to
acupuncture analgesia [55]. C-fiber stimulation additionally plays
a role in manual acupuncture probably by activating DNIC mecha-
nisms [27,56]. The role of C-fibers in electrical acupuncture is less
clear [57]. Nonetheless, other mechanisms may play a role as DNIC
effects are usually short lived (minutes) whereas acupuncture anal-
gesia may peak for hours or days after stimulation [58,59].

Animal and human studies suggest that the primary modulator
involved in acupuncture is the central release of opioid peptides
[57,60-63]. Serotonin and noradrenaline have also been implicated
in the analgesic effects of acupuncture in rodents [64-67]. Despite
the central release of such neuromodulators, the analgesic effects of
acupuncture are often restricted to the ipsilateral side which has led
researchers to suggest that other mediators, such as adenosine A1l
receptors located on ascending nerves, play a role in acupuncture
analgesia [68].

The many modulators involved in acupuncture analgesia com-
plicate the mapping of central circuits in acupuncture analgesia
[69]. Efforts are further complicated by findings from compara-
tive studies in humans which suggest that electrical acupuncture
activates different brain sites than manual acupuncture [70],
that different brain sites are activated during short versus long
term acupuncture [71], and that different acupoints (even within
the same spinal segment) activate different, although somewhat
overlapping, central mechanisms [72]. Neuroimaging of healthy
volunteers have shown that acupuncture increases activity in areas
such as the nucleus raphe magnus (NRM—a part of the RVM) and
the PAG [73-75]. In addition, brain sites such as the SI, SII, ipsi-
lateral superior frontal gyrus, supplementary motor area, caudal
ACC, putamen, insula, contralateral medial and inferior frontal gyri,
thalamus, pons, temporal lobe, prefrontal gyrus, occipital cortex,
hypothalamus, nucleus accumbens, bilateral cerebellum and pri-
mary somatosensory-motor cortex have been found to be active
during acupuncture analgesia in humans while regions such as
the ACC, the amygdala, PFC, sensory thalamus, and the hippocam-
pus have been found to be deactivated [70,73,76-83]. Thus areas
thought to be involved in the sensory-discriminatory aspect of pain
(e.g.,SI, SII, insula, thalamus), as well as the affective (e.g.,amygdala,
ACC) and cognitive-evaluative (e.g., PFC) aspects of pain appear to
be modulated by acupuncture. In addition, areas involved in pain
control (e.g., the PAG and NRM [11]) are activated, suggesting their
involvementin acupuncture analgesia. However, an important note
is that these complex brain activation/deactivation patterns may
be confounded by brain patterns that reflect acupuncture’s other
therapeutic effects (e.g., nausea and vomit reduction [84], depres-
sion reduction [85], weight loss [86], and hypertension regulation
[87]).

A study of low versus high frequency electrical analgesia specifi-
cally assessed correlations between brain activity and acupuncture
analgesia [76]. Activity in contralateral primary motor cortex
and supplementary motor area, ipsilateral superior temporal lobe
(positive correlations), and bilateral hippocampus (negative cor-
relations) were correlated with 2-Hz acupuncture analgesia, and
activity in contralateral parietal BA40, ipsilateral caudal ACC,
nucleus accumbens, and the pons (positive correlations) and con-
tralateral amygdala (negative correlations) were associated with
100-Hz acupuncture analgesia [76], suggesting the specific involve-
ment of these sites in the analgesia generated by acupuncture.
Brain regions that had positive correlations both to 2- and 100-Hz
acupuncture analgesia included bilateral SII and insula, and con-
tralateral caudal ACC and thalamus.
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Collectively, acupuncture studies thus indicate widespread
effects and actions in the brain that are not uniform across stud-
ies, possibly because of differences in acupuncture duration, type
of acupuncture (e.g., electrical versus manual), and participant
expectation and anticipation (e.g., placebo). The effects may fur-
thermore be confused with acupuncture’s other therapeutic effects.
These factors must be taken into account in future imaging stud-
ies of acupuncture in order to provide a clearer picture of the
supraspinal sites contributing to acupuncture analgesia. Studies
that have looked at the specific association between pain reduc-
tions and brain activity suggest the involvement of bilateral SII,
insula, caudal ACC and thalamus in acupuncture analgesia, but their
exact function is yet to be determined.

2.3. Movement

Most people have experienced that the shaking or movement
of a painful body area can relieve acute pain, and motor cortex
stimulation has been demonstrated to alleviate chronic pain [88].
However, little is known about the mechanisms underlying these
effects. Two different mechanisms have been proposed to account
for movement-related pain modulation: modulation by ascending
large fiber signals generated by movement in a gating type effect
(centripetal) or modulation of somatosensory signals at cortical
or subcortical levels by movement-related brain activities in pri-
mary and supplementary motor areas (centrifugal) [89,90]. Studies
using MEG and somatosensory evoked potentials suggest modu-
lation of painful laser-evoked SI and SII activation by movement
[89,91]. Pain intensity evoked by laser stimuli applied to the dor-
sum of the hand was reduced by ipsi- and contralateral active
movement of the hand but not by ipsilateral passive movement
[89]. Inhibition of the contralateral SI amplitude was seen follow-
ing active and passive movement of the ipsilateral hand, and SII
activation was attenuated by ipsilateral and contralateral active
movements but not ipsilateral passive movements. A later study
using somatosensory evoked potentials to painful galvanic stimula-
tion found attenuation of contralateral SI activity with subsequent
increases in contralateral SII and posterior cingulate cortex follow-
ing ipsilateral isometric contraction and attenuation of bilateral SII
activity followed by decreases in the SI and ACC following con-
tralateral isometric contraction [91]. Attenuation of LEPs together
with attenuation of ACC activity (but not attenuation of SI and
SII) was reported before movement takes place in the movement
preparatory period [90]. Thus, it appears that activity in brain
areas of the ‘pain neuromatrix’ are reduced immediately before
or during movement-induced pain reduction (i.e., ACC, SI, SII).
However, to the best of our knowledge, no studies have assessed
activity in movement-related brain areas (i.e., at primary and sup-
plementary motor areas) during movement-induced analgesia in
healthy humans, nor has any studies assessed competing activity
of somatosensory and proprioceptive input to the dorsal horn. Such
studies are needed to clarify the mechanisms by which this type of
pain modulation occurs.

In relation to the discussion of movement-related gating of pain,
it is interesting to note that in patients with central pain following
a spinal cord injury (SCI), pain may be evoked by imagined foot
movements [92]. Using fMRI, Gustin et al. [92] found that move-
ment imagery evoked signal increases in the supplementary motor
area and cerebellar cortex in both SCI subjects and controls. In SCI
subjects, it also evoked increases in the left primary motor cortex
(MI) and the right superior cerebellar cortex. The activation of the
perigenual ACC, right dorsolateral prefrontal, right and left anterior
insula, supplementary motor area and right premotor cortex cor-
related with percentage increase in pain intensity. This suggests
that a cognitive task of imagining movement in patients with deaf-
ferentation is capable of increasing an ongoing chronic pain and

activity in the ‘pain neuromatrix’ (i.e., ACC, PFC and aINS) by a cen-
trifugal effect independently of peripheral inputs. In contrast to this
finding, visualillusions of walking has in other studies in spinal cord
injury patients been shown to decrease pain [93,94].

When looking at studies on movement, it is important to con-
sider the pain modulatory effects of attention (see Section 4.2)
as more attention will inevitably be focused on the moving limb.
To control for attention, studies on evoked potentials and imag-
ined movements have included various control situations (e.g.,
guided imagery, watching a film or increased attention towards
the painful region or stimulation), and, thus, the changes observed
seem to be related specifically to movement or movement imagery
[92-94].

In summary, studies on pain and movement suggest that move-
ment or imagined movement has the potential to modulate pain
and activity in the ‘pain neuromatrix’ (e.g., the ACC, SI and SII).
However, the pain inhibitory effects need to be discriminated
from conditions where movement may exacerbate pain, for exam-
ple musculoskeletal pain conditions. Activity in motor-related
brain sites, such as the supplementary motor area and premo-
tor cortex, probably plays a role in the modulation of pain by
movement. Future neuroimaging studies should assess activity in
movement-related brain sites as well as spinal activity related to
movement-induced analgesia to clarify the neural mechanisms by
which movement reduces pain.

3. Modulation by affective factors

A range of emotions have also been shown to influence the
perception of pain. It is generally recognized that negative emo-
tions increase pain [95-97] whereas positive emotions decrease it
[95-99], although the underlying mechanisms in specific emotional
states still remain unclear. Neuroimaging studies are especially
important in determining the neural structures involved in these
mechanisms as animal studies are of limited use due to the nature
of affective factors. A growing number of imaging studies on emo-
tional modulation of pain have emerged. Below, the modulation
of pain by depression, anxiety, catastrophizing and stress are dis-
cussed.

3.1. Depression

Depressive symptoms have been associated with a heightened
pain experience [100,101], and depression is a frequent complaint
in chronic pain patients [102,103]. Nonetheless, reports also exist of
normal or reduced pain sensitivity in clinically depressed patients
[104-106]. The mechanism underlying the connection between
depression and pain is unknown, but may be explained by a close
biological link; in depression, there is a dysfunction in the serotonin
and norepinephrine neurotransmitter systems [107], and pain is
modulated by serotonin and norepinephrine descending pathways
in the spinal cord from the brainstem [108]. Central hyperexcitabil-
ity and reduced pain thresholds in depressed patients suggest that
a lack of central inhibition could underlie both [109].

Neuroimaging studies show that the ‘pain neuromatrix’ over-
laps with the abnormal neural activity structures of patients
suffering from depression (e.g., at PFC, thalamus, amygdala, ACC
and insula [110,111]. Furthermore, in an fMRI study, depressed
patients experienced hyperactivity in the left ventrolateral thala-
mus, the right ventrolateral PFC and the dorsolateral PFC (areas
responsible for the sensory-discriminatory (i.e., thalamus) and
cognitive-evaluative aspects of pain (i.e., PFC)) compared to healthy
controls when stimulated with a painful 45°C thermode [105].
Symptom severity correlated positively with activity in the left
ventrolateral nucleus of the thalamus, suggesting that depressed
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patients experience greater ‘pain activity’ in the brain than healthy
people. Using fMRI, Strigo etal.[112] observed thata clinical sample
of major depressive disorder patients (MDD) exhibited increased
activity in the right amygdala and decreased activity in the PAG,
rostral ACC and PFC, compared to healthy controls, during painful
stimulation relative to non-painful stimulation. During anticipation
of pain, the right aINS, the dorsal ACC, and the right amygdala (areas
responsible for the affective-motivational aspect of pain) showed
increased activation. This may indicate that depressed patients
experience increased emotional processing before they experience
pain. The activity in amygdala was also associated with greater lev-
els of perceived helplessness. The increased emotional reactivity of
depressed patients anticipating pain may thus cause impaired pain
modulation [112]. How the anticipation of pain affects the ability
to modulate pain in depressed patients is not clear. Cognitive mod-
els of depression propose that depressed individuals are biased in
their monitoring of negative information and exhibit a heightened
awareness of their interoceptive state [112]. The results of Strigo
et al. [112] may represent a neural correlate of hypervigilant mon-
itoring of negative information in MDD. As we describe in Section
4.2, paying attention to painful stimuli may enhance its perceived
painfulness.

Otherimaging studies similarly hypothesize dysfunctional emo-
tion regulation during the experience of pain in depressed persons
[113,114].In patients with fibromyalgia, Giesecke et al. [114] found
that depression did not modulate the sensory dimension of pain
processing, as measured by fMRI and QST. However, depression
was correlated with increased activity in neural regions (i.e., amyg-
dala, and contralateral aINS) that process the affective dimension
of pain. It thus appears that the emotional experience of pain
is different for an individual suffering from depression. Using
fMRI, Berna et al. [113] investigated the hypothesized dysregula-
tion in healthy volunteers who underwent induction of negative
mood and noxious thermal stimulation. In the negative mood
state, the participants showed increased activity during pain in
insula, thalamus, hippocampus, dorsolateral PFC, OFC, and sACC-
areas of the ‘pain neuromatrix’. The participants who reported
the highest degree of pain unpleasantness during negative mood
showed significantly higher activity in the amygdala and the infe-
rior frontal gyrus. These neural structures, underlying emotional
regulation of pain, may thus form part of the mechanisms that
affect pain processing during depressed mood by enhancing the
emotional experience of pain. These data indicate that the modu-
lation of pain by negative mood is not merely a question of biased
attentional pain modulation, but a question of impaired emotion
regulation.

Imaging studies have thus found depression to be associated
with increased activity in some areas of the ‘pain neuromatrix’
(e.g., the insula, left ventrolateral thalamus, the right ventrolat-
eral PFC and the dorsolateral PFC, amygdala) and decreased activity
in others (e.g., rostral ACC, PFC) with some inconsistencies (e.g.,
increased PFC activity in one study and increased PFC activity in
another). In addition, depression may be associated with absent
inhibitory descending modulation (e.g., reduced PAG activity). The
finding of alink between depression and reduced pain perceptionin
some studies points to the need for further studies. Such differences
may relate to the modality of the painful stimulus or differences in
chronicity or degree of depression. Imaging studies suggest that the
negative mood of depressed individuals impairs pain modulation
in neural structures involved in emotion regulation. Especially, the
affective elements of pain processing may be sensitive to depressed
mood resulting in enhancement of pain affect. Future studies that
seek to clarify the underlying mechanisms of the alteration (or dys-
regulation) of pain by depression, for instance, by incorporating the
assessment and treatment of depression and pain simultaneously,
are very much needed.

3.2. Anxiety

Another negative emotion that can enhance pain is anxiety
[115]. Anxiety, in contrast to fear, involves an undefined future
threat without a clear focus [116]. It shares elements with fear (e.g.,
heightened muscle activity, escape or avoidance behaviour and
catastrophizing thoughts), but these are less severe [116]. Hyper-
vigilance (e.g., scanning of the environment for threats, selective
attention to threat-related rather than neutral stimuli) forms an
important part of anxiety [117]. The brain-gut peptide hormone
cholecystokinin (CCK) probably acts like an antagonist to endoge-
nous opioids in mediating the effect of anxiety on pain [118-122].
CCK-driven activation of pro-nociceptive pathways from the PAG
and RVM may also underlie anxiety-induced hyperalgesia as CCK
evokes activity in animal PAG neurons [123,124] and RVM ON neu-
rons [125]. Part of the anti-opioid activity of CCK also appears to
take place in the PAG [126,127].

Consistent with the findings in animals, an fMRI study in
humans showed activity in the PAG in environmental situations
that induced hyperalgesia during anxiogenic stress [128]. Activ-
ity was also observed in the ventral tegmental area (VTA), RVM
and parabrachial nucleus. Activity in the VTA and the entorhinal
cortex in the anticipatory period before noxious thermal stimula-
tion predicted insula activity during stimulation, consistent with
modulation of activity in pain-related brain sites. Ploghaus et al.
[129] similarly demonstrated that the entorhinal cortex exhibited a
stronger response to anxiety-associated noxious stimuli compared
to identical noxious stimuli without associated anticipatory anxi-
ety, and that the enthorhinal areas predicted activity in the closely
connected affective (perigenual cingulate) and pain intensity cod-
ing (mid-insula) areas. Gray and McNaughton [130] propose that
the hippocampal formation (in the enthorhinal cortex) increases
pain during anxiety by amplifying signals to the neural repre-
sentation of the noxious stimulus. In this way, anxiety biases the
individual to adapt its behaviour to the worst possible outcome
[130]. Also using fMRI, Ochsner et al. [131] found that the more
subjects feared pain (indexed by the fear of pain questionnaire),
the more activity was seen in the anterior and posterior cingulate
and OFC during painful versus non-painful stimulation. High fear of
pain may thus increase the sensitivity in regions which encode and
evaluate the emotional aspects of pain. Anxiety about the negative
implications of physical sensations (anxiety sensitivity) was associ-
ated with activation in the medial PFC (i.e., the cognitive-evaluative
aspect of pain), which has been linked with self-reflective processes
[132].

In conclusion, enthorhinal areas may play a role in anxiety-
induced hyperalgesia by increasing activity at pain affective (e.g.,
the perigenual cingulate) and pain intensity coding (e.g., the mid-
insula) areas. Hyperactivity at other pain related sites such as
anterior and posterior cingulate and OFC, which are involved in
the emotional aspects of pain, is also present in subjects who fear
pain and could reflect central sensitization at these sites. Findings
of activity in the VTA, PAG and RVM during anxiety-induced hyper-
algesia are consistent with animal studies. Future studies need to
investigate the functional role of these sites during anxiety-induced
hyperalgesia in humans.

3.3. Catastrophizing

Pain catastrophizing is another construct that taps into a
negative pain schema [133]. It shares statistically significant vari-
ance with broader negative affect concepts such as anxiety and
depression [134]. In fact, there is some debate as to whether catas-
trophizing is a separate construct beyond negative affectivity in
general [133,135,136]. As a maladaptive coping strategy [137],
pain catastrophizing is probably one of the strongest predictors
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of negative pain-related outcomes [138], and it is, for such rea-
sons, included as a separate construct here. It can best be described
as a cognitive interpretation of pain as extremely threatening
[136,139]. The phenomenon is associated with hypersensitivity to
noxious stimuli [137], heightened pain intensity, increased disabil-
ity [134,140] and difficulty disengaging from pain [141], and it may
mediate heightened vigilance to pain [142]. It probably augments
pain through enhanced attention to painful stimuli and heightened
emotional responses [143].

The mechanisms underlying the relationship between pain
catastrophizing and pain are largely unknown. Sullivan et al. [134]
suggested that the cognitive-affective processes of pain catas-
trophizing enhance the experience of pain by altering central
thresholds of excitability which over time increases pain sensitiv-
ity. However, this mechanism has not been confirmed as studies of
the nociceptive flexion reflex (a spinal reflex that subserves with-
drawal from potentially noxious stimuli) in humans fail to find an
association between pain catastrophizing and the nociceptive flex-
ion reflex [144]. Instead, pain catastrophizing and alterations in
supraspinal endogenous pain inhibitory and facilitatory processes
may be associated [133]. Weissman-Fogel et al. [145] studied the
relationship between pain catastrophizing and DNIC in humans.
They found a negative association, suggesting that pain catastro-
phizing is associated with diminished endogenous inhibition of
pain. Consistent with this, Seminowicz and Davis [146] examined
the neural structures involved in the hyperalgesic effect of catas-
trophizing. fMRI was performed in healthy individuals at two pain
intensity levels. During mild pain, they found activity in regions
linked to the affective, attentional and motor aspects of pain, such
as the insula, rostral ACC, PFC and premotor corteX, to be pos-
itively correlated with pain catastrophizing scores. During more
intense pain, catastrophizing was negatively correlated with pre-
frontal areas involved in pain control, such as the dorsolateral PFC
[147], suggesting that pain catastrophizers may have difficulty dis-
engaging from intense pain through a lack of top-down control.
Also activity in the amygdala, right temporal lobe, posterior pari-
etal and lateral SI were negatively correlated with PCS scores during
moderate pain.

Catastrophizing may play a considerable role in maintaining
pain in chronic pain conditions [135]. Gracely et al. [143] used
fMRI to examine the association between catastrophizing and
brain responses in a group of non-depressed fibromyalgia patients,
which were classified as high or low catastrophizers based on
a median split of residual catastrophizing scores. Similar to the
studies in healthy volunteers, they found enhanced neural activ-
ity to blunt pressure in brain areas believed to be involved in
attention to pain (dorsal ACC, dorsolateral PFC), emotional aspects
of pain (claustrum) and motor aspects of pain (premotor cor-
tex) in pain catastrophizers. In addition, they found enhanced
activity in areas involved in the anticipation of pain (medial
frontal cortex and cerebellum), suggesting that pain catastrophiz-
ers with chronic pain develop preconceived expectations about
pain.

These findings imply that catastrophizing is associated with
activity in brain areas related to attention to pain (e.g., the dorsal
ACC, PFC), emotion (e.g., claustrum) and motor (premotor cortex)
activity and, at least during moderate pain, reduced top-down pain
modulation (e.g., from dorsolateral PFC), but to fully determine
the mechanisms by which catastrophizing influences pain, and to
determine if it can be distinguished from the effects of attention and
negative emotions on pain, more research is needed. Most studies
have measured participants’ natural levels of catastrophizing and
looked at its relation to pain. Future studies might benefit from
manipulating levels of pain catastrophizing to help clarify some of
the causal mechanisms underlying the relationship between catas-
trophizing and pain.

3.4. Stress

During stressful or fearful situations, the experience of pain is
less severe probably as a protective response that allows the indi-
vidual to focus on more urgent matters [46]. Multiple mechanisms
appear to mediate stress-induced analgesia (SIA) (see Butler and
Finn [46] for an excellent review). The most well-established is
the endogenous opioid system, but also non-opioid mechanisms
such as GABA-ergic, glutamatergic, cannabinergic and monoamin-
ergic systems have been implicated in SIA [46,148]. Behavioural
and pharmacological studies in animals have shown that lesions
of the RVM, PAG and amygdala lead to a weakened SIA response
[148,149]; the amygdala being a region that is particularly acti-
vated by stress/fear [150]. Neurons from the amygdala project to
brainstem sites such as the PAG and raphe nuclei which in turn
project to the dorsal horn as determined through animal studies
[46,151,152]. To the best of our knowledge, imaging studies of SIA
in humans to confirm or disconfirm these findings are currently
lacking.

The intensity, duration and type of stressor may determine the
type of SIA as well as the degree of the subsequent analgesia. The
sequential exposure of rats to a series of inescapable foot shocks,
for instance, resulted in both an early naltrexone-insensitive and
a late naltrexone-sensitive analgesia [153]. Naltrexone is an opi-
oid receptor antagonist [154]. In a forced swim test, SIA increased
with more extreme temperatures [155], and the degree of SIA dif-
fered with the frequency and pulse-width of electric foot shock
[156]. Thus, imaging studies will need to distinguish between dif-
ferent types of SIA. This is particularly important as it is still unclear
whether the extent of SIA is a linear correlation of the intensity of
the inciting stimulus. In fact, under some experimental conditions,
stress can induce hyperalgesia instead of analgesia (stress-induced
hyperalgesia) [157]. This response may be associated with the for-
mer anxiety-induced hyperalgesia (Section 3.2). In the literature,
they are often not well differentiated. Research is needed to address
if disparities exist between these two phenomena. The mechanisms
underlying stress-induced hyperalgesia are poorly understood. Like
in SIA [158,159], serotonin has been shown to play a role [160,161].
The differing actions of serotonin probably depend on the type of
receptor activated by the stressor. Serotonergic receptor types 5-
HT2, 5-HT3 and 5-HT4 enhance neuronal activity whereas receptor
types 5-HT1A and 5-HT1B suppress neuronal activity [162]. The
location of the 5-HT receptor in the dorsal horn, i.e., on excitatory
versus inhibitory interneurons or projection neurons, may further
determine the resulting outcome [162]. Overactivation and desen-
sitization of opioid receptors may also contribute to hyperalgesia
during prolonged stress [163-166].

Neuroimaging studies of stress-induced hyperalgesia are scarce.
What appears to be the only study found chronic stress (rated on
the perceived stress questionnaire) to be correlated with activity
in right posterior insula, right dorsal posterior cingulate cortex,
right PAG and left thalamus during rectal balloon distension in
healthy females [167]. The authors suggested that chronic stress
may reduce the ability to cope with pain due to impaired pain
inhibition. Greater anxiety developed in the participants with the
highest levels of chronic stress, suggesting that chronic stress may
produce more anxious individuals.

In summary, neuroimaging studies on the relation between
stress and pain are lacking. The only study, which, to our knowl-
edge, has addressed stress and pain, suggests that chronic stress
alters pain control from the PAG resulting in a greater pain expe-
rience. It is important that future neuroimaging studies assess
the link between stress and pain as stress, besides being a
normal response to the threat of injury [46], has become a pub-
lic health issue, and has been shown to play a crucial role in
chronic pain conditions such as fibromyalgia and irritable bowel
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syndrome. For excellent reviews on the two conditions, see
[168,169].

4. Modulation by cognitive factors

A number of cognitive factors are also known to modulate pain.
Also here neuroimaging studies in humans are important as ani-
mal studies cannot adequately address the concepts under study.
The research to date has mainly focussed on placebo analgesia,
modulation by attention/distraction and hypnosis.

4.1. Anticipation/placebo

Placebo analgesia has been known for centuries. It describes
the fact that a supposedly inactive treatment can provide a sub-
stantial pain relieving effect in some patients whereas the term
nocebo is used to describe the reverse situation (i.e., that an inac-
tive treatment can exacerbate pain). Positive expectations are
thought to underlie placebo analgesia whereas negative expec-
tations may explain the nocebo effect [170]. Since it is critical in
modern biomedicine to understand how a given treatment works,
it is also important to elucidate the mechanisms of placebo (and
nocebo). Neuroimaging techniques have considerably advanced
our understanding of some of the intriguing mechanisms of placebo
analgesia, and the reader is referred to several excellent reviews for
in-depth discussions [171-173]. Early behavioural studies showed
that placebo analgesia could be blocked by the opioid receptor
antagonist naloxone, which indicates that the endogenous opi-
oid system is involved in the placebo mechanism [174]. In a PET
study, Petrovic et al. [175] demonstrated related neural mecha-
nisms between placebo and administration of a short-acting opioid
remifentanil. Most significantly, the rostral part of the ACC was acti-
vated in both conditions, and there were significant correlations
between PAG activity and rostral ACC. Subsequent studies using
fMRI have identified a reduction within a more dorsal part of the
ACC, insular cortex and thalamus (i.e., areas of the ‘pain neuroma-
trix’) that correlated with subject-based reports of pain relief in
a placebo condition [176]. Other studies in humans have shown
increased activation of the rostral/subgenual ACC and increased
connectivity to the PAG and the amygdala[177]. It has been pointed
out that differences in methodology, such as subject selection
(responders, non-responders), practice effects and neuroimaging
modality (spatial resolution), could explain these findings [170].

Zubieta and Stohler have in a series of elegant human stud-
ies described more details of the mechanisms underlying placebo
analgesia; thus placebo-induced activation of a distributed and
opioid-sensitive network includes the rostral ACC, OFC, dorso-
lateral PFC, anterior and posterior insula, nucleus accumbens,
amygdala, thalamus, hypothalamus and PAG (for a review, see
Zubieta and Stohler [170,172]). Activation of these brain regions
was correlated with subject-based reports of pain relief, affective
ratings and motivated behaviour [178]. With the use of the radio-
tracer (11C-raclopride), it was also demonstrated that dopamine
D2/3 receptors in the nucleus accumbens play a significant role
in placebo analgesia [179-181]. Activity in the nucleus accumbens
similarly correlated with the extent of placebo analgesia as well as
with dopamine and opioid responses to placebo in a recent mone-
tary reward expectation paradigm, consistent with a role for the
nucleus accumbens in producing placebo analgesia (see Zubieta
and Stohler [170]).

Unlike placebo, the nocebo response appears to be mediated by
CCK because CCK antagonists (CCK-1 and CCK-2) can prevent the
nocebo development of pain and hyperalgesia in a dose-dependent
manner (for a review, see Colloca and Benedetti [182]). As men-
tioned in Section 3.2, CCK also taps into the anxiety domain, but

pharmacological studies on experimental pain suggest that CCK
is specifically involved in nocebo-induced hyperalgesia and only
indirectly in anxiety [183].

Neuroimaging studies have also examined the nocebo response
[173,176,184,185]. Using fMRI, Porro et al. [184] found increased
activity in contralateral SI both prior to and during painful stim-
ulation of a foot. Expected pain intensities correlated positively
with activity in areas of the ‘pain matrix’, such as the ACC, anterior
insula and medial PFC, and were associated with reduced activity
in anteroventral cingulate bilaterally. Brain activity during antici-
pation (that is, prior to the actual pain) was similar to that during
pain, although slightly lower, suggesting top-down facilitation of
pain during anticipation. Using fMRI in a random pain-no pain dis-
persion paradigm, Sawamoto et al. [185] likewise found patterns
of activity in ACC and insula during anticipation of pain to mir-
ror those of ‘real’ pain. Such brain activity appeared to be greater
during the presence versus absence of negative expectations (i.e.,
nocebo effects) [186]. Kong et al. [186] looked at fMRI brain sig-
nals and the influence of nocebo on these in a pain plus nocebo
(pain expectation) versus pain-no nocebo paradigm. They found
increased activity during nocebo in bilateral dorsal ACC, insula,
superior temporal gyrus, left frontal and parietal operculum, medial
frontal gyrus, orbital PFC, superior parietal lobule, hippocampus,
right claustrum/putamen, lateral prefrontal gyrus, and middle tem-
poral gyrus. Hippocampus activity was specifically correlated with
activity in areas of the ‘pain matrix’ (e.g., ACC, insula, left SI),
suggesting an important role for the hippocampus in generat-
ing nocebo hyperalgesia. Neuroimaging studies of nocebo-related
effects and negative expectations have thus shown increased activ-
ity in areas of the ‘pain neuromatrix’, in particular the ACC, PFC
and insula, which may be mediated by the hippocampus. How-
ever, no studies have so far tested the administration of nocebo
substances (inert substances comparable to placebo substances)
on nociceptive processing in the brain.

In conclusion, several neuroimaging studies have demonstrated
that ‘belief’ is a strong modulator of perceived pain, and that it is
associated with functional changes in frontal-limbic brainstem net-
works of the ‘pain neuromatrix’ [172]. However, there is a need for
a more standardised research approach to clarify discrepancies in
the effects of placebo analgesia and to investigate the functional
connectivity between the many brain sites active during placebo
analgesia. More research is also needed to determine the brain sites
involved in the production of nocebo hyperalgesia.

4.2. Attention/distraction

Attention and distraction are other powerful mechanisms by
which the pain experience can be modulated, and they probably
play an indirect role in many of the former mentioned pain con-
trol mechanisms (see Sections on depression (3.1), anxiety (3.2)
and catastrophizing (3.3)). Anxiety and catastrophizing may, for
instance, make individuals more prone to attend to ‘worrying’
phenomena such as pain. Directing attention to a painful stimu-
lus can increase its perceived intensity and unpleasantness [187].
But the pain experience can also be reduced if a cognitive task
is performed during the exposure of a painful stimulus [188].
Both A-8 and C-fiber input is subject to modulation by attentional
mechanisms [189,190]. A series of studies showed attentional mod-
ulation of activity in pain-related brain regions, such as thalamus,
SI, ACC and insular cortex [47,188,191-195]. Heightened SI activ-
ity during attention to a painful stimulus is a common finding in
attention modulation studies [47,193,196-198]. Heightened aINS
activity during attention to a painful stimulus has also previously
been reported [47,196] as has an inverse correlation between mid-
cingulate cortex (ACC) and pain intensity ratings during directed
attention towards pain [47]. In the same study, ACC activity was
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also positively related to pain intensity during attention to auditory
tones (i.e., during distraction from a painful stimulus), suggesting
some non-specified role of the ACC in guiding attention [47].

Distraction studies show complementary findings. Frankenstein
et al. [199] found a reduction in activity of the anterior cingulate
gyrus (BA24) to cold pressor stimulation during a distraction task,
and decreased activity in the right ACC and the right PFC was found
when visceral pain was induced during distraction [195], consis-
tent with reduced activity in pain-related brain areas. Similarly, an
MEG study of distraction from second pain caused by CO, laser
stimulation showed reductions in SI, Sll-insula, cingulate cortex
and medial temporal area [189]. In a PET study, Petrovic et al. [188]
furthermore showed that distracting individuals with a cognitive
task during cold pain, reduced activity in SI, SII and insula, areas
involved in the sensory-discriminatory and affective dimension
of pain. The reduction of experimental pain via distraction with
a Stroop task was also associated with reduced activation of the
insula, thalamus and mid-cingulate region while other areas such
as the perigenual cingulate area and OFC showed increased acti-
vation, suggesting that these areas are involved in the modulatory
effects related to attention [191]. It was also shown that distrac-
tion increases activity in the PAG [200]. This study thus suggests
that top-down-modulation contributes to the pain reducing effects
of distraction. Consistent with earlier studies, Valet et al. [201]
showed that distraction is associated with reduced pain-evoked
activity in SlI, insula and thalamus, but with simultaneous increased
activity in parts of cingulate cortex and OFC.

Studies on attention and distraction thus collectively suggest
that attending to a painful stimulus increases activity in the
‘pain neuromatrix’ (e.g., in aINS, SI) whereas distraction reduces
pain-related brain activity (e.g., in SI, SII, thalamus, insula, ACC).
However, whether this occurs as a linear function of degree of
attention/distraction is unclear. Distraction furthermore activates
regions such as the OFC, perigenual cingulate and the PAG, suggest-
ing that these are involved in the modulatory effects of attention.
However, more research is needed to investigate the mechanisms
underlying these effects. More research is, in particular, needed
to clarify the mechanisms by which activity is heightened dur-
ing directed attention towards pain. Many chronic pain patients
become very occupied and focused on their pain making sustained
distraction from pain difficult [202]. Some studies even suggest
that chronic pain may worsen in response to distraction attempts
[203,204].

4.3. Hypnosis

Hypnosis can not only shape the individual’s perception and
report of pain but also influence both the sensory and the affec-
tive components of pain. For example, hypnotic analgesia has been
shown to reduce the unpleasantness and intensity of experimental
painin healthy individuals, and to be associated with different brain
activation patterns in response to pain stimuli [205-207]. In clinical
settings, hypnosis has also been shown to relieve pain (e.g., during
and after surgical procedures [208,209] and in some chronic pain
conditions [210-213]). In experimental pain studies with healthy
participants, hypnotic analgesia has been shown to be associated
with changes in pain thresholds and physiological pain correlates
including brain activity [214-217], somatosensory event-related
potentials (SERP) [218], and spinal reflexes [219,220]. Highly hyp-
notic susceptible individuals generally display larger reductions in
perceived pain, reflex responses, and amplitudes of SERP to painful
stimuli during hypnosis when compared to individuals with low
hypnotic susceptibility [218,220].

Most of the imaging studies on hypnosis have been performed
in highly hypnotic susceptible healthy individuals. Only a few stud-
ies have been conducted in chronic pain patients [221,222]. In

an fMRI study of hypnotizable healthy volunteers, Schulz-Stiibner
et al. [223] compared activation of brain regions in response to
painful heat stimulation with responses to the same stimulation
during a pleasant hypnotic suggestion of a beach-wave-scenario.
They found decreased pain and increased activation in anterior
basal ganglia, left ACC and less activation in SI, middle cingulate
gyrus, precuneus and visual cortex to painful stimuli during hyp-
nosis than without. Using PET, Hofbauer et al. [205] investigated
the effect of hypnotic suggestions for increased or decreased pain
intensity following painful heat stimulation in healthy volunteers
susceptible to hypnosis. Although increased activity of SI and SII
was found during painful stimulation regardless of the type of
hypnotic suggestion, such increases were greater in response to
hypnotic suggestions for a pain increase than for suggestions of
a pain decrease. Activation of the ACC was also detected, but this
response did not differ between hypnotic suggestions for a pain
increase or decrease, suggesting that the ACC may mediate both the
facilitative and the inhibitory effects of hypnosis on pain. Another
study using PET and EEG by Rainville et al. [206] examined the
effect of hypnotic suggestions directed selectively at modulating
(increasing or decreasing) the unpleasantness of painful heat stim-
ulation in hypnotizable volunteers. They likewise found increased
ACC and unaltered SI response compared with the alert condition
independent of the type of suggestion. The studies by Faymonville
etal.[214,215] also suggest the involvement of the ACC. They com-
pared the effect of hypnotic suggestions (pleasant autobiographic
memories) during painful heat stimulation with the effect of the
same stimulus intensity without hypnosis in highly hypnotizable
healthy people and found decreased pain and an increased ACC
(mid-cingulate area) response in the hypnotic condition, suggest-
ing the involvement of the ACC in decreasing pain during hypnosis.
The authors [215] suggested that it is unlikely that the ACC mod-
ulated pain via attentional mechanisms as it is the more anterior
areas of the ACC that are active in attention-demanding tasks (in
contrast to the mid-cingulate area of the present study).

We have recently shown in chronic temporomandibular dis-
order (TMD) pain patients that, pain and unpleasantness scores
during hypnotic hypoalgesia are significantly lower than in a
‘neutral’ control condition and significantly higher in a hypnotic
hyperalgesia condition [224]. Using fMRI, we found painful stimu-
lation in the control condition to be associated with activation of
right posterior insula, SI, BA21, and BAG6, and left BA40 and BA4
[224]. During hypnotic hyperalgesia, painful stimulation was asso-
ciated with increased activity in right posterior insula and BA6 and
left BA40 whereas hypnotic hypoalgesia was associated with activ-
ityinright posterior insula only. Somewhat unexpectedly, we found
decreases in SI during hypnotic hyperalgesia compared to the con-
trol condition whereas decreases inright posterior insula and BA21,
as well as left BA40 were found during hypnotic hypoalgesia com-
pared to the control. These fMRI findings demonstrate that hypnotic
hypoalgesia is associated with a pronounced suppression of corti-
cal activity and a disconnection between patient-based scores and
cortical activity in SI [224].

In conclusion, hypnotic suggestions of more painful (hyper-
algesic) or less painful (hypoalgesic) conditions can strongly
influence both the cortical responses of the ‘pain neuromatrix’ (e.g.
SI, right posterior insula, ACC (mid-cingulate cortex), thalamus) and
the behavioural aspects of chronic and acute pain, although results
have not always been consistent. ACC activity was demonstrated
both during negative and positive hypnotic suggestions, suggesting
that the ACC mediates the influence of hypnosis on pain. Further
studies will be needed to identify the specific neurotransmitters
(e.g., opioids and dopamine) involved in these processes, but it
may be expected - based on the available information and recent
reviews — that hypnotic analgesia and placebo analgesia have some
degree of overlap in terms of involved neurocircuitries [225].



116 L. Knudsen et al. / Scandinavian Journal of Pain 2 (2011) 108-120

5. Discussion

It is clear that the processing of nociceptive information is com-
plex, and that the experience of pain can be modulated by a variety
of mechanisms that either facilitate or inhibit nociceptive infor-
mation. Somatosensory stimuli, such as noxious stimuli (DNIC),
acupuncture and movement, can reduce the experience of pain and
cortical activity in areas of the ‘pain neuromatrix’ whereas negative
affect, such as depression, anxiety and pain catastrophizing, gener-
ally increase the experience of pain and increase activity in areas of
the ‘pain neuromatrix’ (especially those related to the attentional
and affective dimension of pain) as does chronic stress. How-
ever, extreme acute stress produces analgesia (SIA). The influence
of positive affect on pain processing is less explored. Nonethe-
less, positive affect has been associated with more positive pain
outcomes [95,98,226-228] and, for such reasons, should be inves-
tigated further. Also cognitive factors influence the experience of
pain. Paying attention to a noxious stimulus enhances pain and
increases activity within the ‘pain neuromatrix’ while distraction
decreases its perceived intensity and associated cortical activity.
Hypnotic suggestions or suggestions of effect (placebo) or side
effects (nocebo) can influence the experience of pain and activity
within the ‘pain neuromatrix’ in either direction depending on the
suggested effects.

Findings from imaging studies in relation to the above mech-
anisms are often complex, reflecting activation or deactivation at
numerous brain sites and sometimes contradictory results, which
have led some researchers to suggest that there may be functional
segregation of areas within specific brain sites (e.g., cognitive and
affective areas within the ACC) [50,215]. The complexity reflects
one notable difficulty with imaging studies—the determination of
the function of brain sites. In order to infer something about a par-
ticular pattern of brain activation, it is essential that studies seek
to isolate the factor under investigation by controlling for other
potential influences on brain responses prior to assessing the spe-
cific factor’s influence on (or relation to) nociception. At present the
differential pattern of brain activation (or deactivation) between an
experimental and control condition is assumed to reflect the activ-
ity related to a particular pain mechanism and its effects on other
brain sites. However, we have to be cautious of such interpreta-
tions as they are highly sensitive to statistical thresholding and the
control condition used. Furthermore, correlations are assumed to
infer functional connectivity, but these may be the net outcome of
very complex and widespread interactions in the brain and nervous
system rather than a reflection of direct connectivity.

Unfortunately, the multiplicity of the pain experience compli-
cates efforts to isolate specific factors. In any individual, multiple
pain modulatory mechanisms may be active simultaneously in a
dynamic manner. For instance, a person being asked to immerse
his or her hand in ice water during deep pressure stimulation of
the forehead may simultaneously experience DNIC, SIA, anxiety and
anticipated pain. After a while the person may become familiar with
the stimulation reducing the person’s anxiety, or the person may
start to worry about the pain becoming intolerable (catastrophic
thinking). These factors all add to the pain modulatory cocktail. A
number of, especially affective, modalities (e.g., anxiety, pain catas-
trophizing, chronic stress) are furthermore closely linked to one
another, complicating distinctions between the underlying pain
mechanisms further. Finally, the contribution of aspects not linked
to pain per se, such as motor responses triggered by pain, may also
interfere with the brain patterns of pain processing [229].

Despite this, neuroimaging techniques have helped determine
supraspinal sites involved in a number of pain control mecha-
nisms. The PAG is one area that has consistently been shown to
be activated across the majority of pain mechanisms; it probably
contributes to the pain inhibitory effects of acupuncture, stress,

placebo, and distraction, and it may play an indirect role in DNIC.
It may also facilitate pain during anxiety. Decreased activity in
the PAG (perhaps an inhibition of PAG activity) also appears to
contribute to the pain enhancing effects of depression and pain
catastrophizing. Activity in the RVM (including the NRM), known to
relay descending modulation from the PAG, was also observed both
during acupuncture analgesia and anxiety-induced hyperalgesia. A
note should be made here, that it can be very difficult to confi-
dently identify small nuclei in the brainstem using fMRI, MEG and
PET. Other brain areas (e.g., the ACC, PFC, OFC and nucleus accum-
bens) may also be involved in a number of mechanisms, but their
exact role is less clear.

A final note, neuroimaging studies have almost exclusively
focussed on brain activity. Neuroimaging should also be performed
further down in the central nervous system. fMRI analyses carry the
potential to determine neural activity outside the brain such as in
the trigeminal nucleus caudalis of the spinotrigeminal pathway and
in the dorsal horn of the spinal cord. This would additionally allow
investigation of spinal gating in humans. Arecent study successfully
demonstrated reduced neural activity in the dorsal horn ipsilateral
to noxious arm stimulation in a well-established placebo analgesia
paradigm [230]. Determining the consequence of pain modulation
regimes at the spinal cord and in the spinotrigeminal pathway using
fMRI analyses may help create a more full and coherent picture of
the pain pathway, both under normal and pathological conditions.
Activity in the brainstem and dorsal horn could be coupled with
activity in the brain to improve our understanding of the connec-
tion between these levels of the pathway (functional connectivity)
and may help determine the function of brain sites. Such research
is essential, not only to help map the pain modulatory pathways
under normal conditions, but also to shed light on the mechanisms
that contribute to failed pain control in chronic pain.
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