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The interplay of genotype and 
environment in the development 
of fear and anxiety

Introduction

Fear, the emotion elicited by a realistic 
threatening event or situation, for exam-
ple by a competitor, and anxiety, a dif-
fuse feeling of unease, a state of appre-
hension are phylogenetically old traits 
that are present in all mammals, if not 
already in vertebrates. From our human 
point of view, we usually see fear and anx-
iety as negative. However, it is easily un-
derstood why these traits evolved and why 
they have been positively selected for dur-
ing evolution: individuals that were fearful 
and anxious in a dangerous environment 
had a higher chance of survival and thus 
could pass on their genes more efficient-
ly to the next generation than conspecif-
ics that lacked these emotions.

In humans and animals, members 
of every population differ significant-
ly in terms of their basal levels of anxiety, 
which modulate the intensity of fear re-
actions and anxiety. There are individuals 
with low, moderate or high levels of anx-
iety. In extreme cases, particularly in hu-
mans, these emotions can be highly pro-
nounced even in the absence of an objec-
tive threat, such that psychological strain 
becomes high and an anxiety disorder can 
be diagnosed. Individual levels of anxiety 
develop during the life history of an indi-
vidual and are influenced by both genetic 
and environmental factors [21].

With regard to the role of the environ-
ment, it seems that an organism is espe-
cially susceptible to external influences 
during early phases of life, i.e., during the 
prenatal and early postnatal phase when 

the neuronal circuits of the brain are still 
largely plastic [12]. Studies in humans and 
animals show significantly increased lev-
els of anxiety in offspring of mothers who 
experienced stress during pregnancy [18, 
37, 46, 57]. In addition, negative experi-
ences, such as isolation, neglect or abuse 
during early childhood also correlate sig-
nificantly with increased fear and anxi-
ety, as well as with anxiety disorders dur-
ing adulthood [23, 24]. It is for this reason 
that most studies have hitherto concen-
trated on early phases of development. It 
seems, however, that anxiety circuits in the 
central nervous system (CNS), including 
the prefrontal cortex and parts of the lim-
bic system, e.g., the hippocampus and the 
amygdala (see Wotjak and Pape, this edi-
tion), retain their plasticity during adult-
hood. Accordingly, the levels of anxiety in 
humans and animals can still be modified 
in later phases of life, as is also shown by 
the efficiency of psychotropic drugs and 
psychotherapies [21].

Over the last few years, a set of so-
called candidate genes has been described 
regarding the genetic basis of anxiety and 
the development of anxiety disorders (see 
Domschke, this edition). For example, 
different variants of the serotonin trans-
porter gene, the tryptophan hydroxylase-
2 gene, the monoamine oxidase A gene, 
and the catechol-O-methyltransferase 
gene exist. These code for proteins with 
important functions in the regulation of 
neurotransmitter levels in the brain. Hu-
man carriers of certain variants of these 
genes suffer from an increased risk of de-
veloping anxiety disorders [10, 15]. Simi-

larly, targeted modifications of these genes 
in rodents lead to predictable changes in 
anxiety-like behavior [34, 38].

Especially for the serotonin transporter 
gene, the complex interplay of genetic pre-
disposition and environmental influences 
during different phases of life in the mod-
ulation of the anxious phenotype is well 
understood (see Domschke, this edition). 
In the following, the serotonin transport-
er genotype will serve as an example to 
show how anxiety and fear are shaped by 
gene-by-environment interactions dur-
ing the life history of an individual. In ad-
dition, we will discuss how, in principle, 
adaptive levels of anxiety can develop in-
to anxiety disorders. Finally, we will high-
light open research questions concerning 
the interrelation of life history and anx-
ious phenotype. For a more detailed re-
view on the interaction of genotype and 
environment in the development of fear 
and anxiety see, for example, reviews [7, 
21, 27, 52]. An introduction to the neuro-
psychological aspects (Glotzbach-Schoon 
et al.) and genetic bases of anxiety (Dom-
schke), as well as an overview of the neu-
ronal circuits of fear memory (Wotjak and 
Pape) can be found in this edition.

Serotonin transporter genotype 
and anxious phenotype

Serotonin acts as a neurotransmitter in the 
CNS and is critically involved in the con-
trol of behavior and emotions. A key ele-
ment in the serotonergic neurotransmis-
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sion is the serotonin transporter (SERT, 
often also abbreviated as 5-HTT). This 
protein stops serotonergic neurotrans-
mission by transporting serotonin that 
was released into the synaptic cleft back 
into the presynapse. Hereafter, serotonin 
is recycled and becomes available for re-
peated release ([7]; see . Fig. 1).

In 1996, Klaus-Peter Lesch and col-
leagues described a repeat-length poly-
morphism in the human SERT gene (SL-
C6A4) promotor region [39]: A person 
can be a carrier of either two short alleles, 
two long alleles or both a short and a long 
allele. The short allele results in reduced 

expression of SERT. Compared to carri-
ers of two long alleles, carriers of one or 
two short alleles show higher basal lev-
els of anxiety. Interestingly, a correspond-
ing gene polymorphism was also found in 
populations of rhesus macaques and, sim-
ilarly, carriers of the short allele displayed 
higher levels of anxiety-related behavior 
than animals with long alleles [5, 14].

In 1998, a so-called SERT knockout 
mouse was developed by genetic engi-
neering. In this mouse model, both alleles 
of the SERT gene are inactivated [4], re-
sulting in the absence of the SERT protein 
in these animals. When these homozy-

gous knockout mice are bred with conspe-
cifics with two intact alleles of the SERT 
gene (so-called wild-type mice), heterozy-
gous SERT knockout mice that carry one 
intact and one inactive allele result. Bio-
chemical analysis showed that SERT bio-
synthesis was reduced by 50% in heterozy-
gous SERT knockout mice and complete-
ly absent in homozygous SERT knockout 
mice. The extensive behavioral character-
ization of mice of all three genotypes pro-
vided distinct differences, especially re-
garding anxiety-like behavior [29, 31, 33, 
35]: Whereas homozygous SERT knock-
out mice showed the highest and wild-
type mice the lowest levels of anxiety-like 
behavior, heterozygous animals exhibited 
predominantly intermediate levels. Thus, 
an excellent mouse model was provided to 
study the effects of reduced or absent ex-
pression of SERT on behavior and to an-
alyze the underlying neural and molecu-
lar mechanisms.

The interplay of SERT 
genotype and environment 
during early phases of life 
in the development of the 
anxious phenotype

In 2003, Avshalom Caspi and colleagues 
presented evidence for an interplay of 
SERT genotype and stressful life events 
in the emergence of depressive disorders 
[10]. In their later life, carriers of at least 
one short SERT allele showed more de-
pressive symptoms and were diagnosed 
as depressive or suicidal more often that 
control subjects with two long alleles. This 
effect was most pronounced in subjects 
that experienced serious stressful situa-
tions in earlier years, for example at their 
workplace, in their relationships or con-
cerning their financial situation (see also 
[15]). This epidemiological study contrib-
uted considerably to a highly relevant hy-
pothesis: The manner in which individ-
uals react to a stressor in their environ-
ment depends significantly on their gen-
otype. This means that emotional states 
and psychiatric disorders can result from 
gene-by-environment interactions.

To date, a whole range of comparative 
studies, especially in humans, rhesus ma-
caques and SERT knockout mice, provide 
convincing evidence that the interplay of 
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Fig. 1 8 Serotonin transporter (SERT) polymorphism. In humans, the SERT gene (SLC6A4) is located 
on chromosome 17. The short variant (red) of the repeat polymorphism at the promotor region is as-
sociated with reduced synthesis of SERT mRNA and protein, compared to the long allele (green). This 
in turn results in an increased concentration of serotonin in the synaptic cleft. Carriers of one or two 
short alleles show increased basal levels of anxiety and are more likely to develop an emotional disor-
der such as depression after adverse life experiences
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SERT genotype and negative experiences 
during early phases of life significantly af-
fect anxiety-like behavior in adulthood [1, 
8, 9, 10, 25, 54]. For example, in a study 
by Heiming and colleagues, SERT knock-
out mice either experienced a dangerous 
or a safe environment during pregnancy 
and lactation [25]. Since behavioral-eco-
logical studies showed that infanticide by 
an unfamiliar male poses a major risk fac-
tor for newborn mice, the dangerous en-
vironment was simulated by regularly in-
troducing unfamiliar male bedding into 
the home cage of the mother. A safe en-
vironment was created by adding neutral 
bedding. The offspring of dams that lived 
in a dangerous environment during preg-
nancy and lactation showed more pro-
nounced anxiety-like behavior in adult-
hood than offspring reared in a safe en-
vironment. Interestingly, this effect was 
modulated significantly by the SERT gen-
otype of the offspring: Mice lacking the 
SERT showed considerably higher levels 
of anxiety-like behavior compared to mice 
with one or two intact SERT gene alleles. 
However, when the mothers lived in a safe 
environment, the offspring with different 
genotypes did not differ much from each 
other [25].

How can the adverse environment that 
the mother experiences during pregnan-
cy and lactation influence the behavior of 
her offspring? During pregnancy, envi-
ronmental stressors act on the maternal 
organism and can lead to a change in the 
release of hormones, especially of gluco-
corticoids (e.g., cortisol), catecholamines 
(e.g., adrenaline), and sex steroids (e.g., 
testosterone). These hormones pass—
at least partially—the placenta, enter the 
blood circulation of the fetus and influ-
ence the developing CNS ([52]; see . Fig. 
2). For example, the introduction of unfa-
miliar male bedding into the home cage 
of a pregnant mouse leads to an increase 
in stress hormones (glucocorticoids) [26]. 
Other studies show that the exposure of 
the fetus to high levels of stress hormones 
permanently influences the expression of 
glucocorticoid receptors in the amygdala, 
which induces a distinct anxious pheno-
type in rodents [58].

While maternal hormones appear to 
mediate the influence of adverse condi-

tions on offspring with an anxious pheno-
type during pregnancy, the presence and 
behavior of social companions are of ma-
jor importance during lactation. This ap-
plies mainly to the mother but, depending 
on the species studied, also to the father, 
siblings, or the entire social group [28]. 
Numerous studies have indicated an in-
teraction between the amount and inten-
sity of maternal care on the one hand and 
the behavioral profile, anxiety-like behav-
ior, and stress reactivity of the offspring 
on the other [8, 13, 45]. Maternal care it-
self in turn depends on the environment 
in which the individuals live [51]. When 
female mice raise their offspring in a dan-
gerous environment they show a drastic 
reduction in maternal care in comparison 
to mothers that live in a safe environment 
with their offspring [26].

In summary, a causal relationship exists 
between the environment in which moth-
ers live during pregnancy and lactation 
and the anxious profile of their offspring 
in adulthood. When stressors act upon 
the maternal organism, increased levels of 
anxiety-like behavior can be found in the 
offspring. Such an increase should, how-
ever, not be seen as a behavioral impair-
ment, or even a disorder. Alternatively, 
and in line with recent evolutionary the-
ory, it could represent a so-called adap-
tive maternal effect. This means: Via hor-
monal mechanisms and behavior, moth-
ers can shape the phenotype of their off-
spring in such a way that they are adapted 
to the current (or predicted) environmen-
tal conditions (see . Fig. 2). In a danger-
ous environment it could, for example, be 
beneficial for survival to be less bold and 
a bit more anxious [51, 52].

If the increased anxiety-like behavior 
of the offspring that is caused by an ad-
verse environment during early phases of 
development indeed represents a phyloge-
netically old adaptation, then the question 
arises: Under which conditions can this in 
principle adaptive process develop into a 
behavioral disorder in certain individuals? 
One answer based on numerous studies 
in humans, rhesus macaques and SERT 
knockout mice and rats is: When adverse 
conditions during early phases of life act 
upon individuals with a genotype that is 

related to a decreased expression of SERT 
([40]; see . Fig. 2).

The interplay of SERT genotype 
and social experience during 
adulthood in the development 
of the anxious phenotype

The majority of studies to date on the in-
fluence of environment on the anxious 
phenotype have concentrated on ear-
ly phases of development. However, for 
quite some time, studies in rodents show 
that experiences during adulthood can al-
so have an impact on levels of anxiety-like 
behavior. On the one hand, living in a spa-
tially enriched environment with a lot of 
hiding, climbing and exploration oppor-
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tunities leads to a reduction of this behav-
ioral trait [50]. On the other hand, the ex-
perience of a defeat in an agonistic inter-
action is associated with an increase in 
anxiety-like characteristics [6].

Based on these findings, it was recent-
ly tested in SERT knockout mice wheth-
er the effects of social experiences on 
anxiety-like behavior can be modulated 
by the SERT genotype also in adulthood 
[33]. In this study, adult male mice of all 
three SERT genotypes—with two intact 
alleles, with one or with no intact allele—
made the experience of either being the 
winner or the loser in short-term interac-
tions with conspecifics. Surprisingly, both 
experiences—being a winner and being a 
loser—led to an increase in anxiety-like 
behavior. However, while winners of all 
three genotypes did not differ concerning 
this trait, the losers showed a clear differ-
entiation. Losers with two inactive alleles 
were significantly more anxious than los-
ers of the other two genotypes. Thus, simi-
lar to the early phases of development, the 

way individuals react to stressors in adult-
hood is significantly influenced by their 
SERT genotype.

This finding could be confirmed in 
Pavlovian fear conditioning experiments 
([47, 57]; Wotjak und Pape, this edition). 
Even before the mice encountered a ‘los-
er’ experience, the three genotypes al-
ready differed significantly in aspects of 
their fear extinction (more precisely, in 
the ‘retrieval’ of the extinction memory; 
see Wotjak and Pape, this edition); that 
is to say, in contrast to mice with one or 
two intact alleles, individuals with two in-
active SERT alleles showed a consider-
able impairment to learning that a place 
in which they experienced a stressor ear-
lier is now safe. The previous loser expe-
rience led to a deterioration of extinction 
learning in all three genotypes. But again, 
the magnitude of this effect was depen-
dent on the SERT genotype: Individuals 
with two intact alleles learned faster and 
more sustainably that a previously dan-
gerous place was now safe than conspe-

cifics with two inactive SERT alleles. Mice 
with one intact and one inactive SERT al-
lele showed intermediate levels of extinc-
tion learning [47].

Underlying mechanisms

The question arises as to why individu-
als that were exposed to stressful environ-
mental influences during early phases of 
development and/or in adulthood show 
a higher risk of developing anxiety disor-
ders when they have, depending on their 
genotype, less SERT proteins. At present, 
three factors are primarily discussed [27]:

Firstly, a reduced amount of SERT pro-
tein in humans and animals is related to 
higher sensitivity towards environmental 
stressors [36, 43, 55]. This is reflected, for 
example, in stronger hormonal stress re-
actions towards the same stimulus [20] or 
in stronger neuronal activity of the amyg-
dala in response to fear-eliciting stimu-
li [22].

Secondly, a reduced amount of SERT 
proteins has a significant effect on fear 
memory. The impaired extinction of neg-
ative events could easily lead to the devel-
opment of long-lasting fear associations. 
Accordingly, life-long reduced SERT ex-
pression is related to altered neuronal 
morphology (e.g., density of dendrites 
and dendritic spines) in key regions of the 
cortico-limbic circuitry mediating emo-
tion processing (e.g., prefrontal cortex, 
specific nuclei of the amygdala) ([48, 59]; 
Wotjak and Pape, this edition). Further-
more, the extinction learning of an indi-
vidual, which developed on the basis of 
the SERT genotype and the negative ex-
periences made during development is 
directly reflected in the synchronization 
of oscillating brain waves between the 
amygdala and the prefrontal cortex [47]. 
(Strictly speaking, these brain waves are 
theta waves, which represent a neuronal 
communication element between differ-
ent brain structures. A higher degree of 
synchronization correlates with impaired 
extinction learning.)

Lastly, there is increasing evidence that 
reduced SERT expression leads to an im-
paired ability to actively cope with stress-
ors [30, 41, 42]. This deficit can cause an 
individual to passively endure a stressful 
situation instead of escaping, ultimately 
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Fig. 2 8 The effects of SERT genotype and an adverse environment during early phases of life on the 
behavioral profile of the offspring. An adverse environment during pregnancy and lactation leads to 
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leading to longer exposure to adversity. In 
summary, the combined effect of the three 
factors could explain why individuals with 
reduced or absent SERT expression suffer 
a higher risk of developing anxiety disor-
ders under adverse conditions [27].

Life history and anxious 
phenotype: current 
research questions

It was traditionally assumed that nega-
tive experiences in particular during ear-
ly phases of development increase the risk 
of developing anxiety disorders in adult-
hood. Over the years, this perspective has 
been expanded and environmental influ-
ences in later phases of life were also tak-
en into consideration. The ‘double-hit hy-
pothesis’ postulates that the combined ef-
fect of early (‘first hit’) and a later negative 
life event (‘second hit’), for example dur-
ing adolescence, increases the susceptibili-
ty for psychiatric disorders [3, 56]. The ‘al-
lostatic-load hypothesis’ goes a step fur-
ther and considers the accumulation of 
negative events across the whole life histo-
ry as the substantial risk factor for the de-
velopment of pathologies [44]. The com-
mon underlying assumption of all these 
hypotheses is that the risk of developing a 
psychopathology increases the more neg-
ative life events occur.

Recently, however, an alternative view 
has been proposed: The susceptibility for 
pathologies should be highest when a dis-
crepancy exists between the early environ-
ment an individual was ‘imprinted’ to or 
‘programmed’ for and the one it encoun-
ters later in life [2, 19]. According to this 
‘match-mismatch hypothesis’, the risk of 
developing a psychiatric disorder depends 
on the degree of consistency (‘match’) or 
discrepancy (‘mismatch’) between the 
early and late environment [11, 49, 53]. A 
particularly high level of anxiety or an in-
creased probability for anxiety disorders 
could for example result when individu-
als experience very positive circumstanc-
es during early phases of development, 
but find themselves under extreme ad-
verse conditions in adulthood, i.e., when 
they experience a strong ‘mismatch’. Thus, 
there are different hypotheses concerning 
the relationship between life history and 
the development of the anxious pheno-

type. Conclusive experiments are needed 
to decide between these alternative ideas.

In addition, an increasing number of 
scientists support the view that neither 
the accumulation of negative experienc-
es over the life history, nor the discrep-
ancy between the early and late environ-
ment are the critical factors, but instead 
an individual’s resilience [16, 17, 32]. Resil-
ience denotes the ability to maintain men-
tal balance or regain it after adverse life 
events. Accordingly, a pronounced resil-
ience is associated with a decreased proba-
bility to develop anxiety disorders. On the 
other hand, weak resilience is associated 
with an increased probability. However, to 
what extent an individual’s resilience is de-
termined by genotype, experiences made 
during life history or by an interaction be-
tween both factors is not yet known.
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