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Introduction

The actin cytoskeleton of cells is primari-
ly associated with the cytoskeletal frame-
work in the cytoplasm built up, e.g by 
stress fibres. Herein, actin runs through 
cycles of polymerisation into filamentous 
F-actin and depolymerisation into mono-
meric globular G-actin. Thereby, the ac-
tin equilibrium is influenced by several 
actin binding proteins (ABPs). While for-
min, profilin or Arp2/3 complexes stim-
ulate F-actin binding, the actin-severing 
proteins gelsolin and cofilin disassemble 
F-actin, thus providing new nucleation 
points for polymerisation [6]. Important 
superior regulators of actin dynamics are 
the Rho-GTPases RhoA, Rac1 and Cdc42. 
Via directed polymerisation of the actin 
cytoskeleton into cellular structures such 
as stress fibres (RhoA), undulating lamel-
lipodia (Rac1) and finger-shaped filopodia 
(Cdc42) Rho-GTPases modulate cell mo-
tility and adhesion. During the past few 
years studies have shown that the adjust-
ment of the actin cytoskeleton in the cy-
toplasm induced by extracellular signal-
ling molecules is not the end of the signal 
transduction cascade. Instead, the adjust-
ment of the actin polymerisation/depoly-
merisation balance creates a signal that is 
relayed to the nucleus, thereby modulat-
ing gene expression [17, 22, 25]. This ac-
tin-based signalling to the nucleus is vir-
tually unknown for microtubules and in-
termediate filaments.

Within the nucleus, a gene regulatory 
complex harbouring the transcription fac-
tor serum response factor (SRF) at its cen-
ter has been identified as the primary ac-
ceptor of actin signalling [17, 22, 25]. SRF-
regulated genes primarily fall into two 

classes, the transcription of which is reg-
ulated by SRF-recruited transcription fac-
tors [13, 22](. Fig. 1). One mechanism of 
SRF activation is by MAP kinase-induced 
phosphorylation of members of the ter-
nary complex factor (TCF) cofactor fam-
ily, e.g. after serum or growth factor stim-
ulation. In addition to the MAP kinases, 
SRF also responds to Rho-GTPase-/actin-
based signalling in which members of the 
myocardin-related transcription factor 
(MRTF) family of SRF cofactors function 
as sensors. In muscle cells TCF and MRTF 
cofactors can compete for SRF interaction 
in which crosslinking of superior signal-
ling pathways (MAP kinases, Rho-GTPas-
es) can be involved [17].

The following gene response is 
switched on by the interaction of SRF with 
the named cofactors: (a) With the help of 
TCFs (e.g. Elk-1) SRF induces the imme-
diate-early gene answer (IEG) which was 
originally documented in neurons by Mor-
gan et al. [5]. Herein, IEGs like c-fos, Egr1 
and Arc are induced very rapidly (with-
in minutes) but transiently after stimu-
lus entry (e.g. serum, growth factors). (b) 
SRF responds not only to Rho-GTPase-/
actin signalling, but various genes that en-
code for actin isoforms (Actb, Actc, Actg, 
Acta) or ABPs (gelsolin, vinculin, tropo-
myosin, myosin) are under SRF-regulat-
ed transcription [13, 17, 22]. Furthermore, 
SRF abrogates activity of the actin sever-
ing protein cofilin [1]. For this purpose 
SRF can influence the CDK/Lim-Kinase-
induced cofilin phosphorylation [14] via 
Cdk16 (Pctaire) transcription.

The MRTF-SRF complex as a 
target of actin signalling

The signal transduction generated by ac-
tin polymerisation/depolymerisation is 
carried out by members of the MRTF 
family such as MRTF-A (=MAL) that 
function as actin balance sensors. In con-
trast to other regulatory mechanisms (e.g. 
phosphorylation of TCFs) the activity of 
MRTFs is determined to a great extent by 
their subcellular localisation (cytoplasm 
vs. nucleus) (. Fig. 1).

In non-stimulated cells G-actin binds 
MRTF-A in the cytoplasm, thereby in-
hibiting the nuclear import of MRTF-A 
(. Fig. 1). Additionally, residual nuclear 
MRTF-A is reduced by actin- and MAP 
kinase-dependent MRTF-A export [17]. 
Remarkably, nuclear G-actin can sup-
press additional activation of MRTF-A 
and SRF at SRF-regulated promoters. The 
abovementioned mechanisms (. Fig. 1) 
account for a low nuclear MRTF localisa-
tion and thus prevent activation of SRF.

Stimulation of cells can induce in-
creased F-actin polymerisation. This is 
accompanied by a decrease in cytoplas-
mic (and nuclear?) G-actin levels, there-
by releasing MRTF-A. MRTF-A can now 
enter the nucleus and induce SRF-mediat-
ed transcription. In addition to enhanced 
MRTF-A import, actin-mediated MRTF-
A export from the nucleus is reduced [25, 
26].

Consequently, G-actin leads to inhi-
bition, while F-actin polymerisation in-
creases SRF-mediated gene activity. As al-
ready mentioned above, this mechanism 
is elaborated for diverse non-neuronal cell 
types. The importance of this communi-
cation of actin signalling with nuclear 
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gene expression in neurons is only at the 
beginning. However, initial studies show 
[14, 24] that MRTFs also seem to function 
as the central sensor of actin signalling in 
neurons.

The actin-MRTF-SRF 
triumvirate in neurons

Particular features of 
neuronal actin dynamics

In non-neuronal cells such as fibroblasts 
actin stress fibres are rather homoge-
neously spread throughout the whole cy-
toplasm. In contrast in neurons F-actin is 
concentrated to the motile end structures 
of neurites, so-called growth cones (GC) 
([6], . Fig. 2a). The actin-rich growth 
cones usually lie far away from the neu-
ronal soma. Hence one could assume that 
MRTF-A as a possible neuronal sensor of 
actin signalling needs to be imported in-

to the nucleus over a long distance, e.g. by 
retrograde transport after the release of G-
actin.

Actin-mediated signalling 
in neurons

Can actin signalling also modulate SRF-
mediated gene activity in neurons? The 
available data indicate that the gener-
al mechanism of actin signalling on SRF 
in neurons is similar to non-neuronal 
cells [24]. Therefore, different actin mu-
tants with altered polymerisation prop-
erties and interaction with ABPs gener-
ated by single amino acid changes were 
used [20, 21]. For instance, the actin mu-
tant G15S increases actin polymerisation. 
In fact, we observed the incorporation of 
actin G15S into endogenous F-actin poly-
mers in growth cones [24]. As reported 
for non-neuronal cells [20, 21] actin G15S 
increases SRF-mediated gene expression 

in neurons [24]. Additionally, actin G15S 
stimulated neurite growth and formation 
of filopodia in growth cones (. Fig. 2b).

In contrast to actin G15S, the actin mu-
tant R62D cannot be incorporated in F-ac-
tin and thus can contribute to an increase 
in the G-actin level. Indeed, actin R62D 
localises primarily outside the growth 
cones to the neuronal soma [24]. Actin 
R62D reduced neuronal SRF-mediated 
gene expression. In addition, actin R62D 
inhibited neurite growth and altered neu-
ronal morphology in such way that actin 
R62D-expressing neurons resemble SRF-
deficient neurons (. Fig. 2c). In addition 
to the cytoplasmic actin R62D, a further 
ectopic actin R62D relocated to the nucle-
us was investigated [24]. Therefore, actin 
R62D was fused to a nuclear localisation 
signal (NLS) (actin R62D-NLS). Interest-
ingly, actin R62D-NLS could reduce SRF-
mediated gene expression and—like cyto-
plasmic R62D actin—influence neuronal 
morphology (. Fig. 2d). Although actin 
R62D-NLS was separated from the cyto-
plasmic actin pool neurons looked simi-
lar, much like after expression of the cyto-
plasmic actin R62D variant.

How can actin R62D from the nucleus 
modulate neuronal morphology to such 
an extent? One possibility could be that G-
actin in the nucleus is bound to MRTF-
A in neurons as shown for non-neuronal 
cells [26]. This nuclear G-actin/MRTF-A 
complex could then disable SRF-mediated 
gene expression in neurons. Additionally, 
MRTF-A export from the nucleus could 
be increased by G-actin. Such a scenar-
io could explain the phenotypic similar-
ity of actin R62D-expressing and SRF-de-
ficient neurons. The finding that MRTF-
A in some but not in all studies was re-
ported to have a constitutive nuclear lo-
calisation in neurons is in agreement with 
such a mechanism [13]. Thus, nuclear G-
actin in comparison to the mechanism of 
the MRTF-A nucleus-cytoplasm translo-
cation would have an outstanding control 
position for regulation of MRTF-A-SRF 
activity in neurons. But how could MRTF-
A, in the case of a stringent nuclear locali-
sation, adopt its function as a sensor of ac-
tin dynamics in neurons? One possibility 
could be that changes within the growth 
cone actin dynamics modulate the cyto-
plasmic G-actin level. Thereby, a guidance 
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Fig. 1 8 Cytoskeletal actin dynamic and myocardin-related transcription 
factor (MRTF)-mediated regulation of serum response factor (SRF) target 
genes. By binding to its receptor signalling molecules trigger the activation 
of Rho-GTPases. These then activate ROCK (Rho Kinase), which phosphory-
lates LIMK (LIM Kinase). Phosphorylated LIMK inhibits cofilin by phosphory-
lation, so that cofilin-mediated F-actin degradation processes are reduced. 
In this way the G-/F-actin balance is shifted to F-actin. MRTF that is normal-
ly retained in the cytoplasm by association with G-actin can now gain ac-
cess to the nucleus. Here it promotes the expression of cytoskeletal genes 
amongst others actin itself as a partner protein of SRF. This increases the cy-
toplasmic actin level and retains MRTF in the cytoplasm. Additionally, nucle-
ar actin increases MRTF-A export from the nucleus and reduces the MRTF-
SRF activity at the promoter of target genes

2 |  e-Neuroforum 1 · 2011

Review article



cue, for example, such as ephrin-induced 
growth cone collapse [11] that leads to a 
transient F-actin decrease, could increase 
the G-actin level. This possible increase in 
the initial cytoplasmic G-actin level could 
ultimately lead to an increase in nuclear 
G-actin. Nuclear actin could then bind 
to MTRF-A and influence SRF-mediated 
gene activity as mentioned earlier. In con-
trast, a BDNF-mediated increase in num-
ber and length of filopodia [7] that pos-
sibly is accompanied by an increased F-
actin level could reduce the G-actin lev-
el. This would correlate with the already 
known stimulation of SRF-activity by 
BDNF [13]. As actin per se harbours no 
nuclear import signal, the question arises 
as to how actin reaches the nucleus in neu-
rons? One possible scenario is that actin 
along ABPs such as profilin, which con-
tain an NLS is imported “piggy back” in-
to the nucleus. In fact, a synaptic activity-
induced profilin import that can co-trans-
port actin is reported in neuronal nuclei 
[3]. Although the exact mechanism mod-
ulating SRF gene activity by the actin sig-
nalling in neurons, in particular the em-
bedding of MRTF-A in this triumvirate, 
is not finally clarified; MRTF-A seems to 
be an important communicator between 
actin signalling and SRF. This is support-
ed by in vivo data reported in Mrtf and Srf 
mouse mutants.

Neuronal phenotypes of Mrtf 
and Srf mouse mutants

Forebrain-specific conditional Srf mouse 
mutants show neuronal phenotypes that 
reflect a dysregulation of both primarily 
SRF-regulated gene classes (IEGs and cy-
toskeletal genes) (see Introduction). Thus, 
various processes that depend on expres-
sion of cytoskeletal genes, which contrib-
ute to neuronal motility, are impaired in 
SRF-deficient mice [13]. Defective cell mi-
gration of progenitor cells from the sub-
ventricular zone to the olfactory bulb was 
reported in an initial work [1]. Further 
works then showed that SRF influenc-
es neurite growth, neuronal polarisation 
and axonal control of hippocampal axo-
ns in the peripheral nervous system [12, 
24, 28]. SRF-deficient neurons display re-
duced neurite growth, bipolar shape and 
absent filopodia structures in growth 

cones ([12, 24], . Fig. 2e). Several axon 
guidance cues (ephrin, semaphorin, neu-
rotrophin, reelin) cannot modulate the 
cytoskeleton within SRF-deficient neu-
rons [24]. This leads to an impaired eph-
rin-induced growth cone collapse in SRF-
deficient neurons and in turn to the for-
mation of novel F-actin and microtubule 
rings [12]. The latter could be explained 
by defective activity of the F-actin sever-
ing protein cofilin, the activity of which is 
regulated by SRF [1, 14].

In addition to these phenotypes that 
primarily reflect the cytoskeletal regula-
tory function of SRF, processes that are 
based on normal neuronal activity-in-
duced gene expression, such as IEG in-
duction in SRF-deficient mice [24], are 
also affected. Thus the IEG response in 
adult SRF-deficient mice induced either 
by a new environment (environmen-
tal enrichment) or by forced synaptic ac-
tivity (electroconvulsive shocks) is sup-
pressed [24]. The IEG Arc in particular 
seems to be an important SRF-regulated 
target gene after induction of synaptic ac-
tivity [23]. This absent neuronal IEG re-
sponse correlates with an induced long-
term potentiation or long-term depres-
sion of hippocampal synapses. This could 
lead to the disrupted habituation of SRF-
deficient mice to a new environment al-
so reported [24]. Recently, the condition-
al neuronal Mrtfa/Mrtfb double mutants 
were analysed [14] whose phenotype bears 
a striking resemblance to Srf mouse mu-
tants. These phenotypic similarities are 
so far mainly in terms of neuronal motil-
ity. For example, Mrtfa/Mrtfb mouse mu-
tants display defective neuronal migra-
tion based on the SVZ as well as reduced 
neurite growth [14]. Furthermore, MRT-
Fs regulate cofilin activity in a comparable 
manner to SRF (see above) [1, 14]. These 
results, which prove close cooperation be-
tween MRTFs and SRF in neuronal pro-
cesses in vivo, are supported by further in 
vitro results. In fact, an MRTF-A-induced 
change of neuronal morphology requires 
SRF [12]. Conversely, SRF-mediated gene 
expression in the presence of a dominant-
negative MRTF-A protein is disturbed 
[27]. In summary, we can confirm that ac-
tin-MRTF-SRF build an important func-
tional unit. Basic regulatory mechanisms 
of this trio seem to be observed between 
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Abstract
Actin, arranged for example in stress fibres, 
provides a fundamental cytoskeletal frame-
work function to all cell types. Notably, there 
is now mounting evidence that, in addition 
to cytoplasmic cytoskeletal regulation, ac-
tin treadmilling provides a signal modulat-
ing nuclear gene expression. In altering gene 
regulation, cytoplasmic and most likely also a 
nucleus-resident actin provides an addition-
al (gene) regulatory twist to cell motility. So 
far, the transcription factor serum response 
factor (SRF) alongside its myocardin-relat-
ed transcription factor (MRTF) cofactors has 
emerged as the main target of actin dynam-
ics. In this review, we discuss the impact of 
actin signalling on nuclear gene expression in 
the nervous system, where the actin-MRTF-
SRF module contributes to various processes 
including neuronal motility.
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different cell types, although neuronal-
specific features exist that require further 
investigation.

Excursus: nuclear actin

Studies on actin microfilament have fo-
cused mainly on cytoplasmic functions 
such as cytoskeleton formation. The fact 
that actin can also be found within the nu-
cleus was long seen as controversial, since 
nuclear F-actin cannot be made visible 
cytochemically by phalloidin. In recent 
years, however, it became clear that nucle-
ar actin can be found in many cell types as 
well as in neurons [2, 10, 18, 25]. Moreover, 
a multitude of ABPs such as profilin, co-
filin, thymosin [2, 8, 25] and actin related 
proteins (ARPs) [16] localise to the nucle-
us, suggesting dynamic regulation of nu-
clear actin.

The role of nuclear actin in the regula-
tion of MRTF-SRF signalling has already 
been addressed above. Nuclear actin al-
so plays a role in additional nucleus-spe-

cific processes (. Fig. 3). Beside the reg-
ulation of the chromatin structure, ac-
tin participates in the control of gene ex-
pression. In this context, actin associates 
with the ATPase subunit of chromatin re-
modelling complexes of the Brg-associat-
ed factor (BAF) family, thereby regulat-
ing its activity [16] and binding to chro-
matin [29]. For the transcription of ge-
netic information, the RNA polymerase is 
required which, together with other pro-
teins, binds to the DNA, whereby actin 
participates in the building of the protein 
complex [28], and by recruiting the motor 
protein nuclear myosin 1 (NM1) is able to 
facilitate the progress of transcription [9]. 
The resulting RNA is complexed by het-
erogeneous nuclear ribonucleoproteins 
(hnRNPs), with actin interacting with a 
series of hnRNPs and consulting histone 
acetyltransferases, thus facilitating the 
progression of transcription [15, 16]. Ac-
tin also seems to participate in the sub-
sequent RNA export by binding specific 

hnRNPs that can enclose the RNA until its 
export from the nucleus [19].

By this means actin builds a molecu-
lar platform for various levels of transcrip-
tion (. Fig. 3): from chromatin remodel-
ling, RNA polymerase activity and com-
plexation of freshly synthesized RNA up 
to nuclear export. In the named cases ac-
tin seems to function as a regulatory sub-
unit and signal transmitter. To what extent 
these processes include cytoskeletal struc-
ture formation, as shown for Xenopus nu-
clei [4], requires further investigation.
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