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Introduction

The actin cytoskeleton of cells is primari-
ly associated with the cytoskeletal frame-
work in the cytoplasm built up, e.g by
stress fibres. Herein, actin runs through
cycles of polymerisation into filamentous
F-actin and depolymerisation into mono-
meric globular G-actin. Thereby, the ac-
tin equilibrium is influenced by several
actin binding proteins (ABPs). While for-
min, profilin or Arp2/3 complexes stim-
ulate F-actin binding, the actin-severing
proteins gelsolin and cofilin disassemble
F-actin, thus providing new nucleation
points for polymerisation [6]. Important
superior regulators of actin dynamics are
the Rho-GTPases RhoA, Rac1 and Cdc42.
Via directed polymerisation of the actin
cytoskeleton into cellular structures such
as stress fibres (RhoA), undulating lamel-
lipodia (Ract) and finger-shaped filopodia
(Cdc42) Rho-GTPases modulate cell mo-
tility and adhesion. During the past few
years studies have shown that the adjust-
ment of the actin cytoskeleton in the cy-
toplasm induced by extracellular signal-
ling molecules is not the end of the signal
transduction cascade. Instead, the adjust-
ment of the actin polymerisation/depoly-
merisation balance creates a signal that is
relayed to the nucleus, thereby modulat-
ing gene expression [17, 22, 25]. This ac-
tin-based signalling to the nucleus is vir-
tually unknown for microtubules and in-
termediate filaments.

Within the nucleus, a gene regulatory
complex harbouring the transcription fac-
tor serum response factor (SRF) at its cen-
ter has been identified as the primary ac-
ceptor of actin signalling [17, 22, 25]. SRF-
regulated genes primarily fall into two
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classes, the transcription of which is reg-
ulated by SRF-recruited transcription fac-
tors [13, 22](B Fig. 1). One mechanism of
SREF activation is by MAP kinase-induced
phosphorylation of members of the ter-
nary complex factor (TCF) cofactor fam-
ily, e.g. after serum or growth factor stim-
ulation. In addition to the MAP kinases,
SRF also responds to Rho-GTPase-/actin-
based signalling in which members of the
myocardin-related transcription factor
(MRTF) family of SRF cofactors function
as sensors. In muscle cells TCF and MRTF
cofactors can compete for SRF interaction
in which crosslinking of superior signal-
ling pathways (MAP kinases, Rho-GTPas-
es) can be involved [17].

The following gene response is
switched on by the interaction of SRF with
the named cofactors: (a) With the help of
TCFs (e.g. Elk-1) SRF induces the imme-
diate-early gene answer (IEG) which was
originally documented in neurons by Mor-
gan et al. [5]. Herein, IEGs like c-fos, Egr1
and Arc are induced very rapidly (with-
in minutes) but transiently after stimu-
lus entry (e.g. serum, growth factors). (b)
SREF responds not only to Rho-GTPase-/
actin signalling, but various genes that en-
code for actin isoforms (Actb, Actc, Actg,
Acta) or ABPs (gelsolin, vinculin, tropo-
myosin, myosin) are under SRF-regulat-
ed transcription [13, 17, 22]. Furthermore,
SREF abrogates activity of the actin sever-
ing protein cofilin [1]. For this purpose
SREF can influence the CDK/Lim-Kinase-
induced cofilin phosphorylation [14] via
Cdk16 (Pctaire) transcription.

The MRTF-SRF complex as a
target of actin signalling

The signal transduction generated by ac-
tin polymerisation/depolymerisation is
carried out by members of the MRTF
family such as MRTF-A (=MAL) that
function as actin balance sensors. In con-
trast to other regulatory mechanisms (e.g.
phosphorylation of TCFs) the activity of
MRTFs is determined to a great extent by
their subcellular localisation (cytoplasm
vs. nucleus) (B Fig. 1).

In non-stimulated cells G-actin binds
MRTF-A in the cytoplasm, thereby in-
hibiting the nuclear import of MRTF-A
(B Fig. 1). Additionally, residual nuclear
MRTEF-A is reduced by actin- and MAP
kinase-dependent MRTF-A export [17].
Remarkably, nuclear G-actin can sup-
press additional activation of MRTF-A
and SRF at SRF-regulated promoters. The
abovementioned mechanisms (B Fig. 1)
account for a low nuclear MRTF localisa-
tion and thus prevent activation of SRE

Stimulation of cells can induce in-
creased F-actin polymerisation. This is
accompanied by a decrease in cytoplas-
mic (and nuclear?) G-actin levels, there-
by releasing MRTF-A. MRTF-A can now
enter the nucleus and induce SRF-mediat-
ed transcription. In addition to enhanced
MRTEF-A import, actin-mediated MRTF-
A export from the nucleus is reduced |25,
26].

Consequently, G-actin leads to inhi-
bition, while F-actin polymerisation in-
creases SRF-mediated gene activity. As al-
ready mentioned above, this mechanism
is elaborated for diverse non-neuronal cell
types. The importance of this communi-
cation of actin signalling with nuclear
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Fig. 1 A Cytoskeletal actin dynamic and myocardin-related transcription
factor (MRTF)-mediated regulation of serum response factor (SRF) target
genes. By binding to its receptor signalling molecules trigger the activation
of Rho-GTPases. These then activate ROCK (Rho Kinase), which phosphory-
lates LIMK (LIM Kinase). Phosphorylated LIMK inhibits cofilin by phosphory-
lation, so that cofilin-mediated F-actin degradation processes are reduced.
In this way the G-/F-actin balance is shifted to F-actin. MRTF that is normal-
ly retained in the cytoplasm by association with G-actin can now gain ac-
cess to the nucleus. Here it promotes the expression of cytoskeletal genes
amongst others actin itself as a partner protein of SRF. This increases the cy-
toplasmic actin level and retains MRTF in the cytoplasm. Additionally, nucle-
ar actin increases MRTF-A export from the nucleus and reduces the MRTF-

SRF activity at the promoter of target genes

gene expression in neurons is only at the
beginning. However, initial studies show
[14, 24] that MRTFs also seem to function
as the central sensor of actin signalling in
neurons.

The actin-MRTF-SRF
triumvirate in neurons

Particular features of
neuronal actin dynamics

In non-neuronal cells such as fibroblasts
actin stress fibres are rather homoge-
neously spread throughout the whole cy-
toplasm. In contrast in neurons F-actin is
concentrated to the motile end structures
of neurites, so-called growth cones (GC)
([6], @ Fig.2a). The actin-rich growth
cones usually lie far away from the neu-
ronal soma. Hence one could assume that
MRTF-A as a possible neuronal sensor of
actin signalling needs to be imported in-
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to the nucleus over a long distance, e.g. by
retrograde transport after the release of G-
actin.

Actin-mediated signalling
in neurons

Can actin signalling also modulate SRF-
mediated gene activity in neurons? The
available data indicate that the gener-
al mechanism of actin signalling on SRF
in neurons is similar to non-neuronal
cells [24]. Therefore, different actin mu-
tants with altered polymerisation prop-
erties and interaction with ABPs gener-
ated by single amino acid changes were
used [20, 21]. For instance, the actin mu-
tant G15S increases actin polymerisation.
In fact, we observed the incorporation of
actin G15S into endogenous F-actin poly-
mers in growth cones [24]. As reported
for non-neuronal cells [20, 21] actin G15S
increases SRF-mediated gene expression

in neurons [24]. Additionally, actin Gi5S
stimulated neurite growth and formation
of filopodia in growth cones (8 Fig. 2b).

In contrast to actin Gi5S, the actin mu-
tant R62D cannot be incorporated in F-ac-
tin and thus can contribute to an increase
in the G-actin level. Indeed, actin R62D
localises primarily outside the growth
cones to the neuronal soma [24]. Actin
R62D reduced neuronal SRF-mediated
gene expression. In addition, actin R62D
inhibited neurite growth and altered neu-
ronal morphology in such way that actin
R62D-expressing neurons resemble SRF-
deficient neurons (B Fig. 2¢). In addition
to the cytoplasmic actin R62D, a further
ectopic actin R62D relocated to the nucle-
us was investigated [24]. Therefore, actin
R62D was fused to a nuclear localisation
signal (NLS) (actin R62D-NLS). Interest-
ingly, actin R62D-NLS could reduce SRF-
mediated gene expression and—like cyto-
plasmic R62D actin—influence neuronal
morphology (B Fig. 2d). Although actin
R62D-NLS was separated from the cyto-
plasmic actin pool neurons looked simi-
lar, much like after expression of the cyto-
plasmic actin R62D variant.

How can actin R62D from the nucleus
modulate neuronal morphology to such
an extent? One possibility could be that G-
actin in the nucleus is bound to MRTF-
A in neurons as shown for non-neuronal
cells [26]. This nuclear G-actin/MRTF-A
complex could then disable SRF-mediated
gene expression in neurons. Additionally,
MRTEF-A export from the nucleus could
be increased by G-actin. Such a scenar-
io could explain the phenotypic similar-
ity of actin R62D-expressing and SRF-de-
ficient neurons. The finding that MRTF-
A in some but not in all studies was re-
ported to have a constitutive nuclear lo-
calisation in neurons is in agreement with
such a mechanism [13]. Thus, nuclear G-
actin in comparison to the mechanism of
the MRTF-A nucleus-cytoplasm translo-
cation would have an outstanding control
position for regulation of MRTF-A-SRF
activity in neurons. But how could MRTF-
A, in the case of a stringent nuclear locali-
sation, adopt its function as a sensor of ac-
tin dynamics in neurons? One possibility
could be that changes within the growth
cone actin dynamics modulate the cyto-
plasmic G-actin level. Thereby, a guidance
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cue, for example, such as ephrin-induced
growth cone collapse [11] that leads to a
transient F-actin decrease, could increase
the G-actin level. This possible increase in
the initial cytoplasmic G-actin level could
ultimately lead to an increase in nuclear
G-actin. Nuclear actin could then bind
to MTRF-A and influence SRF-mediated
gene activity as mentioned earlier. In con-
trast, a BDNF-mediated increase in num-
ber and length of filopodia [7] that pos-
sibly is accompanied by an increased F-
actin level could reduce the G-actin lev-
el. This would correlate with the already
known stimulation of SRF-activity by
BDNF [13]. As actin per se harbours no
nuclear import signal, the question arises
as to how actin reaches the nucleus in neu-
rons? One possible scenario is that actin
along ABPs such as profilin, which con-
tain an NLS is imported “piggy back” in-
to the nucleus. In fact, a synaptic activity-
induced profilin import that can co-trans-
port actin is reported in neuronal nuclei
[3]. Although the exact mechanism mod-
ulating SRF gene activity by the actin sig-
nalling in neurons, in particular the em-
bedding of MRTF-A in this triumvirate,
is not finally clarified; MRTF-A seems to
be an important communicator between
actin signalling and SRE This is support-
ed by in vivo data reported in Mrtfand Srf
mouse mutants.

Neuronal phenotypes of Mrtf
and Srf mouse mutants

Forebrain-specific conditional Srf mouse
mutants show neuronal phenotypes that
reflect a dysregulation of both primarily
SRF-regulated gene classes (IEGs and cy-
toskeletal genes) (see Introduction). Thus,
various processes that depend on expres-
sion of cytoskeletal genes, which contrib-
ute to neuronal motility, are impaired in
SRF-deficient mice [13]. Defective cell mi-
gration of progenitor cells from the sub-
ventricular zone to the olfactory bulb was
reported in an initial work [1]. Further
works then showed that SRF influenc-
es neurite growth, neuronal polarisation
and axonal control of hippocampal axo-
ns in the peripheral nervous system [12,
24, 28]. SRF-deficient neurons display re-
duced neurite growth, bipolar shape and
absent filopodia structures in growth

cones ([12, 24], B Fig. 2e). Several axon
guidance cues (ephrin, semaphorin, neu-
rotrophin, reelin) cannot modulate the
cytoskeleton within SRF-deficient neu-
rons [24]. This leads to an impaired eph-
rin-induced growth cone collapse in SRF-
deficient neurons and in turn to the for-
mation of novel F-actin and microtubule
rings [12]. The latter could be explained
by defective activity of the F-actin sever-
ing protein cofilin, the activity of which is
regulated by SRF [1, 14].

In addition to these phenotypes that
primarily reflect the cytoskeletal regula-
tory function of SREF, processes that are
based on normal neuronal activity-in-
duced gene expression, such as IEG in-
duction in SRF-deficient mice [24], are
also affected. Thus the IEG response in
adult SRF-deficient mice induced either
by a new environment (environmen-
tal enrichment) or by forced synaptic ac-
tivity (electroconvulsive shocks) is sup-
pressed [24]. The IEG Arc in particular
seems to be an important SRF-regulated
target gene after induction of synaptic ac-
tivity [23]. This absent neuronal IEG re-
sponse correlates with an induced long-
term potentiation or long-term depres-
sion of hippocampal synapses. This could
lead to the disrupted habituation of SRF-
deficient mice to a new environment al-
so reported [24]. Recently, the condition-
al neuronal Mrtfa/Mrtfb double mutants
were analysed [14] whose phenotype bears
a striking resemblance to Srf mouse mu-
tants. These phenotypic similarities are
so far mainly in terms of neuronal motil-
ity. For example, Mrtfa/Mrtfb mouse mu-
tants display defective neuronal migra-
tion based on the SVZ as well as reduced
neurite growth [14]. Furthermore, MRT-
Fs regulate cofilin activity in a comparable
manner to SRF (see above) [1, 14]. These
results, which prove close cooperation be-
tween MRTFs and SRF in neuronal pro-
cesses in vivo, are supported by further in
vitro results. In fact, an MRTF-A-induced
change of neuronal morphology requires
SREF [12]. Conversely, SRF-mediated gene
expression in the presence of a dominant-
negative MRTF-A protein is disturbed
[27]. In summary, we can confirm that ac-
tin-MRTEF-SRF build an important func-
tional unit. Basic regulatory mechanisms
of this trio seem to be observed between
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Abstract

Actin, arranged for example in stress fibres,
provides a fundamental cytoskeletal frame-
work function to all cell types. Notably, there
is now mounting evidence that, in addition
to cytoplasmic cytoskeletal regulation, ac-
tin treadmilling provides a signal modulat-
ing nuclear gene expression. In altering gene
regulation, cytoplasmic and most likely also a
nucleus-resident actin provides an addition-
al (gene) regulatory twist to cell motility. So
far, the transcription factor serum response
factor (SRF) alongside its myocardin-relat-

ed transcription factor (MRTF) cofactors has
emerged as the main target of actin dynam-
ics. In this review, we discuss the impact of
actin signalling on nuclear gene expression in
the nervous system, where the actin-MRTF-
SRF module contributes to various processes
including neuronal motility.
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Fig. 2 A Actin signalling changes SRF-mediated gene activity and neuron morphology. Light red
shows endogenous F-actin, while dark red marks the localisation of the overexpressed actin mutant.
A A control neuron develops several neurites at the end which growth cones (GC) with finger-like filo-
podia can be found. SRF is localized in the nucleus. B Overexpression of the G15S actin mutant shifts
the actin balance towards F-actin. The actin mutant is mainly found within the growth cones. G155 ac-
tin increases the neurite length and number of filopodia in growth cones. G15S expression increases
SRF-mediated gene expression (upward arrow). CThe R62D actin mutant shifts the G/F-actin balance
towards monomeric G-actin and localises in complementary regions to endogenous F-actin. Overex-
pression of R62D actin reduces SRF-mediated gene expression (downward arrow) and leads to an al-
tered neuron morphology. Neurites are strikingly short and growth cones are free of filopodia. D An
R62D mutant fused to a nuclear localisation signal (NLS) localises to the nucleus of the neuron. Similar
to the cytoplasmic R62D mutant (see C), this decreases SRF-mediated gene expression and alters neu-
ron morphology in a similar way. E Overexpression of both the cytoplasmic and the nuclear R62D ac-
tin mutant (C and D) result in a phenotype which is also found in SRF-deficient neurons

different cell types, although neuronal-
specific features exist that require further
investigation.

Excursus: nuclear actin

Studies on actin microfilament have fo-
cused mainly on cytoplasmic functions
such as cytoskeleton formation. The fact
that actin can also be found within the nu-
cleus was long seen as controversial, since
nuclear F-actin cannot be made visible
cytochemically by phalloidin. In recent
years, however, it became clear that nucle-
ar actin can be found in many cell types as
well as in neurons [2, 10, 18, 25]. Moreover,
a multitude of ABPs such as profilin, co-
filin, thymosin [2, 8, 25] and actin related
proteins (ARPs) [16] localise to the nucle-
us, suggesting dynamic regulation of nu-
clear actin.

The role of nuclear actin in the regula-
tion of MRTF-SREF signalling has already
been addressed above. Nuclear actin al-
so plays a role in additional nucleus-spe-
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cific processes (B Fig. 3). Beside the reg-
ulation of the chromatin structure, ac-
tin participates in the control of gene ex-
pression. In this context, actin associates
with the ATPase subunit of chromatin re-
modelling complexes of the Brg-associat-
ed factor (BAF) family, thereby regulat-
ing its activity [16] and binding to chro-
matin [29]. For the transcription of ge-
netic information, the RNA polymerase is
required which, together with other pro-
teins, binds to the DNA, whereby actin
participates in the building of the protein
complex [28], and by recruiting the motor
protein nuclear myosin 1 (NM1) is able to
facilitate the progress of transcription [9].
The resulting RNA is complexed by het-
erogeneous nuclear ribonucleoproteins
(hnRNPs), with actin interacting with a
series of hnRNPs and consulting histone
acetyltransferases, thus facilitating the
progression of transcription [15, 16]. Ac-
tin also seems to participate in the sub-
sequent RNA export by binding specific

hnRNPs that can enclose the RNA until its
export from the nucleus [19].

By this means actin builds a molecu-
lar platform for various levels of transcrip-
tion (B Fig. 3): from chromatin remodel-
ling, RNA polymerase activity and com-
plexation of freshly synthesized RNA up
to nuclear export. In the named cases ac-
tin seems to function as a regulatory sub-
unit and signal transmitter. To what extent
these processes include cytoskeletal struc-
ture formation, as shown for Xenopus nu-
clei [4], requires further investigation.
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