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Degenerative Verdnderungen der Netz-
hautkénneninjeder Altersstufe auftreten
und bedeuten dann fiir die Betroffenen
hiufig fundamentale Einschnitte in Le-
bensqualititund Lebens- bzw. Berufspla-
nung. Neben einer prizisen klinischen
Diagnosestellung erwarten die Patien-
ten vor allem therapeutische Optionen,
die den langfristigen Erhalt ihres Sehver-
mogens zum Ziel haben oder verlorenes
Augenlicht wiederherstellen kénnen. Die
moglichst vollstindige Aufklirung der
genetischen Ursachen von degenerativen
Netzhautverdnderungen ist in den letz-
ten Jahren wesentlich vorangeschritten,
auch aufgrund weitreichender Entwick-
lungen bei hochinnovativen Nasslabor-
sowie IT-Verfahren. Somit haben sich
unsere Kenntnisse der Ursachen und pa-
thologischen Mechanismen bei den viel-
faltigen Formen der Netzhautdegenera-
tionen in einem Mafle erweitert, das bis-
her nicht gekannte individualisierte Be-
handlungsoptionen eréffnet.

In der folgenden Darstellung sollen
die einzelnen Stufen dieses Prozesses —
von der Genetik, zum Verstindnis der
Krankheitsmechanismen, bis hin zur
Entwicklung innovativer Therapiemog-
lichkeiten - tbersichtsartig dargestellt
werden. Fiir eine vertiefende Betrach-
tung beispielhafter individualisierter
Therapieentwicklungen aus dem Be-
reich der Netzhauterkrankungen wird
auf die nachfolgenden Artikel dieses
Schwerpunktheftes verwiesen.

Genetik monogenetischer
Netzhautdystrophien

Aktuell sind tber 200 Gene bekannt,
die ursiachlich mit etwa 100 klinischen
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Krankheitsbildern monogener Netzhaut-
erkrankungen assoziiert sind (@ Abb. 1).
Zu den hiufigsten Formenbildern der
Retinopathien zdhlen die Retinitis pig-
mentosa (geschdtzte Préivalenz etwa
1:6000) und der Morbus Stargardt (etwa
1:10.000), wobei sich die Privalenz-
schitzer in verschiedenen ethnischen
Bevolkerungen deutlich unterscheiden
konnen [1].

Die Gruppe der erblichen Retino-
pathien und deren Vererbungsmuster
erweisen sich als heterogen, nicht nur
zwischen verschiedenen Erkrankungs-
bildern, sondern auch innerhalb einer
definierten Krankheitsgruppe [2]. Die
klinische Diagnose basiert meist auf
bildgebenden Verfahren wie Fundus-
aufnahmen oder optischer Kohirenz-
tomographie (OCT) sowie auf elektro-
physiologischen Untersuchungen mittels
Elektroretinogramm (ERG) oder Elek-
trookulogramm (EOG) [2]. Zur Befund-
sicherung bzw. Prazisierung der klini-
schen Diagnose wird zunehmend eine
molekulargenetische Diagnostik durch-
gefihrt, die aufgrund der genetischen
Heterogenitit der einzelnen retinalen
Krankheitsbilder meist eine umfangrei-
che Genpanelanalytik erfordert.

Mittels der sogenannten Next-Gene-
ration-Sequencing(NGS)-Technologie
konnen heute im Hochdurchsatzverfah-
ren umfingliche Panels mit den bisher
verifizierten Krankheitsgenen parallel
und mit angemessenem zeitlichen bzw.
personellen Aufwand molekulargene-
tisch untersucht werden. Auch eine
Sequenzierung der gesamten kodieren-
den Sequenz des Genoms (das sog.
»Exom®) kann bei komplexen singuld-
ren Fillen indiziert sein. Trotz dieser

Entwicklungen wird jedoch iiber alle
erblichen Retinopathien hinweg in nur
etwa 50-60 % der Fille eine abschlie-
Bende Klarung der genetischen Ursache
der Erkrankung erreicht [3].

Umfassende  molekulargenetische
Untersuchungen zeigen gerade fiir die
Gruppe der Netzhautdystrophien, dass
krankheitsverursachende Mutationen in
einem Gen hidufig pleiotrope Effekte
aufweisen, die somit klinisch distinkte
Netzhautdystrophien verursachen [4].
Beispielsweise finden sich Mutationen
im ABCA4-Gen sowohl bei einer spezi-
fischen Form der Retinitis pigmentosa
als auch bei Morbus Stargardt oder der
Zapfen-Stibchen-Dystrophie [5]. Dies
deutet auch auf mogliche Effekte indivi-
dueller Lebensfithrung oder genetischer
Hintergriinde hin, die modifizierend
auf den spezifischen Krankheitsverlauf
einwirken kénnen. Alternativ ist denk-
bar, dass die beobachteten Phidnotypen
der Netzhaut ein Kontinuum darstellen
und somit nicht als distinkte klinische
Pathologien betrachtet werden sollten.

Umgekehrt konnen pathogene Mu-
tationen in funktionell unabhingigen
Genen zu klinisch nicht zu unterschei-
denden Retinopathien fithren. Beispiels-
weise konnten bis heute Mutationen in
mindestens 85 Genen mit dem klinisch
recht homogenen Krankheitsbild einer
Retinitis pigmentosa assoziiert werden
(B Abb. 1). Diese hohe genetische Hete-
rogenitdt macht eine DNA-Diagnostik
unerldsslich, vor allem dann, wenn eine
individualisierte Therapie angeboten
werden kann.
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Abb. 1 A Ubersichtskarte zur Genetik der monogenen Netzhautdystrophien. Als Quelle fiir kausale Netzhautdystrophie-
gene wurde die aktuelle Version von RetNet (https://sph.uth.edu/retnet/, Stand 10.04.2017) herangezogen. Deren geno-
mische Positionen wurden mit PhenoGram [40] visualisiert. Fiir die jeweilige Krankheitsentitdat wurden die verschiedenen
genetischenVererbungsmuster (autosomal-dominant, autosomal-rezessiv, bzw. X-gebunden) zusammengefasst dargestellt.

Esist zu beachten, dass Netzhautdystrophiegene des mitochondrialen Genoms nicht dargestellt wurden

Genetik komplex vererbter
Netzhauterkrankungen

Glaukom

Das Glaukom ist durch eine zunehmen-
de Schidigung des Sehnervs mit nachfol-
gendem Untergang der Sehnervenfasern
gekennzeichnet. Es zdhlt zu den hiufigs-
ten Erblindungsursachen weltweit und
kann grob in drei Gruppen unterteilt
werden - das primére Offenwinkelglau-
kom (POAG), das primdre Engwinkel-
glaukom (PACG) und das Pseudoexfo-
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liationsglaukom (PEX). Als gemeinsame
Risikofaktoren der drei Glaukommani-
festationen finden sich das Alter, das Ge-
schlecht und die ethnische Zugehorigkeit
sowie ein erhohter intraokularer Druck
und ein abnormaler Durchmesser der
Sehnervscheibe. Fiir diese Risikofaktoren
wird die Heritabilitdt auf ungefahr 50 %
geschitzt [6]. Zudem wird eine familidre
Hiufung beim Glaukom beobachtet [7],
was einen starken genetischen Anteil am
Erkrankungsrisiko vermuten lésst [8].
Genomweite Assoziationsstudien
(GWAS) haben fiir die beiden Glau-

komformen POAG und PACG, bisher
jedoch nicht fir PEX, Genregionen iden-
tifiziert, die das Risiko fur die jeweilige
Erkrankung signifikant beeinflussen.
So konnten fiir POAG insgesamt neun
[9] und fiur PACG acht [10] signifi-
kant assoziierte Genorte beschrieben
werden (@ Abb. 2). Zusammen erkliren
diese Mutationen lediglich 4-5% des
genetischen Risikos, weisen aber auf
eine mogliche ursichliche Rolle einer
mitochondrialen Dysfunktion, verdn-
derte Zell-Zell-Adhdsion sowie einen
gestorten Kollagenstoffwechsel in der



Zusammenfassung - Abstract

Krankheitsentstehung hin. Funktionelle
Arbeiten zu den moglichen genetischen
Risikofaktoren liegen bislang nicht vor,
sodass sich zum gegenwirtigen Zeit-
punkt keine weiterfithrenden Erkennt-
nisse auf mogliche Therapieoptionen
aus dem bisherigen genetischen Wissen
ergeben.

Diabetische Retinopathie

Die diabetische Retinopathie (DR) ist
vor allem in Entwicklungsldndern eine
hiufige Ursache von Erblindung [11].
Zu den bekannten Risikofaktoren zih-
len die Dauer der grundlegenden Dia-
beteserkrankung, ein inadiquat einge-
stellter Blutzuckerspiegel, die ethnische
Herkunft sowie Bluthochdruck und das
Geschlecht. In Familien- und Zwillings-
studien wurde die Heritabilitit von DR
aufungefahr 25 % geschitzt [12]. Die Va-
riabilitit der Erkrankung mit Blick auf
Privalenz sowie Krankheitsverlauf ist je-
doch, selbst bei Personengruppen unter
vergleichbarem Einfluss der bekannten
Risikofaktoren, auffallend grofi. In den
letzten Jahren gab es vielfache Anstren-
gungen, die genetischen Grundlagen der
DR zu entschliisseln (zusammengefasst
inRef[12]),jedoch findensichinder Lite-
ratur bisher keine GWAS-Ansitze, die auf
eine signifikante Assoziation von gene-
tischen Varianten mit dem diabetischen
Augenphinotyp hinweisen wiirden. Zwar
wurden im Rahmen von Kandidaten-
genstudien verschiedene Gene als poten-
ziell assoziiert gefunden, jedoch weisen
die Ergebnisse der einzelnen Studien we-
nig Ubereinstimmung auf. Somit gibt es
zum gegenwirtigen Zeitpunkt keine veri-
fizierte Assoziation zwischen genetischen
Verdnderungen und dem Auftreten von
DR (B Abb. 2).

Altersabhangige
Makuladegeneration

Diealtersabhidngige Makuladegeneration
(AMD) ist die hiufigste Erblindungsur-
sache in den Industriestaaten bei Perso-
nen iiber 55 Jahren. Es wird geschitzt,
dass in der Allgemeinbevolkerung un-
gefdhr 10 % der tiber 80-Jdhrigen an ei-
ner fortgeschrittenen AMD leiden. Al-
leine in Deutschland betrifft dies aktuell
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Netzhautdegenerationen

Zusammenfassung

Das Wissen um die genetischen Ursachen von
Netzhautdegenerationen, ob monogen oder
komplex, ist eine wichtige Voraussetzung,
um grundlegende physiologische Prozesse
der Krankheitsentwicklung zu verstehen

und darauf aufbauend eine individualisierte,
prazise auf den Patienten zugeschnittene
Therapie entwickeln zu kdnnen. Diese
Ubersicht fasst zundchst den gegenwirtigen
Wissensstand der Genetik von erblichen
Netzhautdystrophien und von komplexen
retinalen Degenerationen zusammen. Hieraus
lassen sich ursachliche Mechanismen und
molekulare Pathologien des klinisch und
genetisch heterogenen Krankheitsbildes
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Genetische Risiken und Therapieentwicklung bei

der Netzhautdegenerationen ableiten.
Aufbauend auf diesen Kenntnissen ldsst

sich schlieBlich die Rolle der Genetik in der
Therapieentwicklung beleuchten, die wesent-
lich die groB3e Vielfalt von therapeutischen
Strategien in diesem Bereich begriindet. In
weiteren Artikeln dieses Schwerpunktheftes
werden solche Therapiestrategien an
ausgewahlten Beispielen veranschaulicht.

Schliisselworter

Erbliche Netzhautdystrophie - Komplexe
Netzhautdegeneration - Genetik - Genetische
Risikofaktoren - Therapieentwicklung

Abstract

Understanding the genetic causes of mono-
genic and complex retinal degenerations is
crucial in elucidating the basic physiological
processes involved in the development of
the respective disease. Building upon such
an insight will enable the development

of therapies precisely tailored to patients.
This review summarizes the present state

of knowledge on the genetics of hereditary
retinal dystrophies and complex retinal
degeneration, implicating a number of causal
mechanisms and molecular pathological
conditions underlying the clinically and ge-
netically heterogeneous symptoms of retinal

Genetic risks and therapy development in retinal degeneration

degeneration. Building on this knowledge,
the role of genetics in devising treatment
strategies becomes obvious and is revealed
by a plethora of therapeutic treatments in
this field. Some of these will be explored

in more depth, with selected examples, in
other articles included in this special issue of
Medizinische Genetik.

Keywords

Hereditary retinal dystrophy - Complex retinal
degeneration - Genetics - Genetic risk factors -
Therapy development

etwa 200.000 Personen. Neben umwelt-
bedingten Faktoren wie Rauchen oder
Ernihrung, spielt vor allem die Genetik
eine grof3e Rolle fiir das Krankheitsrisiko
einer AMD-Manifestation [13].

Vor Kurzem hat das Internationale
AMD Genomics Consortium (IAMD-
GC) eine genomweite Assoziationsstudie
mit etwa 50.000 Individuen durchgefiihrt
und dabei genetische Varianten in ins-
gesamt 34 verschiedenen Genomregio-
nen identifiziert, die hochst signifikant
mit der AMD assoziiert sind (@ Abb. 2;
[14]). Sechs dieser Regionen weisen auf
eine direkte Verbindung der AMD mit
dem Komplementsystem der angebore-

nen Immunitit hin. Diese und weite-
re Studien [15, 16] zeigen iibereinstim-
mend, dass das Komplementsystem eine
zentrale Rolle in der Pathologie der AMD
spielt. Evidenzen fir weitere Signalwe-
ge sind bisher weniger eindeutig, es gibt
jedoch Hinweise fiir eine Anreicherung
von AMD-assoziierten Genen aus dem
Cholesterinstoffwechselbzw. von solchen
Genen, die essenziell fiir die Homdostase
der extrazelluliren Matrix sind.

Die hohe statistische Aussagekraft
des jingsten IAMDGC GWAS-Da-
tensatzes zeigte sich beispielhaft bei
der rdaumlichen Auflosung eines hoch-
signifikanten Assoziationssignals auf
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Abb. 2 A UbersichtskartezurGenetik derkomplexen Netzhautdegenerationen. Genomweit signifikant assoziierte Genregio-
nen fiir die altersabhdngige Makuladegeneration (AMD), das primare Offenwinkelglaukom (POAG) und das primére Engwin-
kelglaukom (PCAG) wurden aus den jiingsten Veréffentlichungen [9, 10, 14] entnommen und mit PhenoGram [40] dargestellt.
JederPunktentsprichteinem assoziierten Genortim menschlichen Genom. Esist zu beachten, dass fiir die diabetische Retino-
pathie gegenwirtig keine genomweiten Assoziationen bekannt sind. Fiir eine verbesserte Ubersicht wurden Chromosomen,
die keine signifikant assoziierten Genorte enthalten, nicht dargestellt

Chromosom 10q26 im sog. ARMS2/
HTRAI Genort [17]. Aufgrund eines
starken Kopplungsungleichgewichts an
diesem Genort war das primére Assozia-
tionssignal nicht hinreichend auflosbar
und es war, auch aufgrund einer Rei-
he von funktionellen Untersuchungen,
sowohl eine Rolle von HTRAI [18-20]
als auch von ARMS2 [21-24] in der
AMD-Pathogenese denkbar. Individuel-
le Rekombinationsereignisse innerhalb
dieser lediglich etwa 30.000 Basenpaa-
re umfassenden genomischen Region
des ARMS2/HTRAI Intervalls konnten
im IAMDGC-Datensatz jedoch in ei-
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ner Hiufigkeit gefunden werden, die
erstmals statistisch-genetische Aussagen
ermoglichte. Somit konnte gezeigt wer-
den, dass Varianten im unmittelbaren
HTRA1-Genort kein Risiko fiir die AMD
tragen, wihrend Varianten innerhalb des
ARMS2-Lokus das gesamte genetische
Risiko zu reflektieren scheinen [25].
Ein solcher Ansatz ist exemplarisch
und erlaubt nicht krankheitsrelevan-
te genetische Varianten auszuschliefSen
und somit die weiteren funktionellen
Arbeiten auf eine reduzierte Zahl von
potenziell funktionellen Varianten zu
priorisieren.

Es gibt Hinweise, dass die durch
GWAS identifizierten genetischen Vari-
anten pleiotrope Effekte besitzen [26].
Solche Varianten konnen mit gleich
oder entgegen gerichteten Effekten das
Krankheitsrisiko unterschiedlicher kom-
plexer Krankheitsbilder und Merkmale
beeinflussen. So ist beispielsweise seit
Lingerem bekannt, dass das e2-Allel des
Apolipoprotein E (APOE) Gens sowohl
das Krankheitsrisiko fiir Herz-Kreis-
lauf-Erkrankungen sowie fiir Morbus
Alzheimer reduziert, das gleiche Allel
jedoch auch das Risiko fir Vitamin K-
Mangel und AMD erhéht [27]. In einer



jlingeren Arbeit wurde die Uberlap-
pung des genetischen Risikos bei AMD
und weiteren 60 komplexen Eigenschaf-
ten bzw. komplexen Krankheitsbildern
untersucht [28]. Dieser Abgleich basier-
te auf einem sogenannten genetischen
Score, der vereinfacht die gewichtete
Summe von Risikoallelen eines definier-
ten Krankheitsbildes ausdriickt und mit
dessen Hilfe sich der gesamte genetische
Beitrag zu einer Krankheit bzw. zu einem
Phinotyp beschreiben ldsst [29]. Die Stu-
die konnte nachweisen, dass 16 der 60
untersuchten Scores mit dem Krank-
heitsrisiko fiir eine AMD assoziiert sind.
Daraus ldsst sich beispielsweise schluss-
folgern, dass AMD-Patienten genetisch
anfilliger fiir Autoimmunerkrankungen
und fiir verschiedene Arten von Haut-
krebs sind. Im Gegensatz dazu haben
AMD-Patienten ein genetisch geringeres
Risiko fiir Herz-Kreislauf-Erkrankun-
gen. Dies beruht wahrscheinlich darauf,
dass AMD-Patienten mehr genetische
Varianten besitzen, die hohere Werte des
High Density Lipoproteins (HDL) im
Blut bewirken. Solche Einsichten kon-
nen nun ganz allgemein genutzt werden,
um das Potenzial, aber auch die Gefah-
ren von etablierten Therapien bei der
Behandlung von AMD-Erkrankungen
abzuschitzen. So konnten beispielsweise
AMD-Patienten von immunregulatori-
schen Therapien profitieren, umgekehrt
jedoch einem erhohten Risiko bei der
Einnahme von HDL erhdhenden Stati-
nen ausgesetzt sein.

Die Rolle der Genetik von
Netzhautdegenerationen bei
der Therapieentwicklung

Das Wissen um die Genetik monogener
Netzhautdystrophien kann eine grofle
Bedeutung fiir mogliche Behandlungs-
optionen besitzen. Ein solches Wissen
kann zum einen den entsprechenden
Gendefekt, der der Degeneration zu-
grunde liegt, beschreiben, den Mecha-
nismus herausarbeiten und somit die
therapeutische Strategie vorgeben. So
miissen Netzhautdystrophien, denen
eine dominant-negative Mutation zu-
grunde liegt, prinzipiell anders therapiert
werden als solche, die autosomal-rezes-
siv vererbt werden oder sich aufgrund

einer Haploinsuffizienz eines bestimm-
ten Proteins entwickeln. In den letzten
Jahren haben mehrere Studien gezeigt,
dass die Genersatztherapie ein sehr viel-
versprechender Ansatz fiir autosomal-
rezessive Netzhautdystrophien ist [30].
So konnte beispielsweise bei Patienten
mit der Leber’schen kongenitalen Amau-
rose (LCA), einer juvenilen und in der
Regel ungiinstig verlaufenden Netzhaut-
dystrophie, die gentherapeutisch behan-
delt wurden, eine deutliche Verbesserung
des Sehvermogens beobachtet werden
[31]. Nicht tiberraschend zeigte sich
ein besonders beeindruckender Erfolg
der Behandlung bei jiingeren Patienten,
bei denen die degenerativen Prozesse
in der Netzhaut weniger fortgeschritten
waren. Der Grund hierfiir konnte darin
liegen, dass bei dieser Patientengruppe
ein merklicher Erhalt an noch funk-
tionellen Photorezeptoren vorliegt und
somit ein Ersatz eines defekten Gens,
eine Korrektur eines Gendefekts oder
die Beeinflussung eines aberranten Si-
gnalwegs weitere degenerative Prozesse
verhindert. Eine maximal positive Wir-
kung gentherapeutischer Behandlungen
konnte somit bei moglichst frither Ap-
plikation gegeben sein. In diesen Féllen
konnten Risikopersonen mithilfe einer
molekulargenetischen Diagnostik und
einer engmaschigen ophthalmologi-
schen Verlaufskontrolle frithzeitig einer
entsprechenden Therapie zugefiihrt wer-
den. Bei autosomal-dominanten Netz-
hauterkrankungen gibt es derzeit keine
gentechnischen Behandlungsoptionen.
Jedoch sind aktuelle Ansitze denkbar,
die auf Endonukleasen des adaptiven
bakteriellen Immunsystems zuriickgrei-
fen (z. B. das CRISPR-Cas9 System) und
die lokusspezifisch das mutierte Allel
aus dem Genom der betroffenen Zel-
len der Netzhaut herausschneiden oder
reparieren [32].

Im Gegensatz zu den erblichen Re-
tinopathien spielt die Genetik bei der
Behandlung komplexer retinaler Er-
krankungen bisher eine untergeordnete
Rolle [33, 34]. Entsprechend basieren
die derzeit zugelassenen Therapien nicht
auf den Erkenntnissen von genetischen
Studien. Das ist auch wesentlich dadurch
beeinflusst, dass nur wenige genetische
Faktoren bekannt sind, die insbesondere

den Verlauf und den Schweregrad von
komplexen retinalen Degenerationen
beeinflussen [35], also jene Parameter,
die fiir eine Therapieentwicklung ent-
scheidend sein sollten. Man muss jedoch
bedenken, dass neue Erkenntnisse aus
genetischen Studien fiir komplexe Netz-
hautdegenerationen zum Teil erst seit
Kurzem bekannt sind, was deren thera-
peutische Umsetzung erst in der nihe-
ren Zukunft erwarten ldsst. So braucht
es durchschnittlich mehr als 40 Jahre
von der ersten Beschreibung eines Pro-
zesses bis zur Markteinfithrung eines
darauf aufbauenden Medikaments [36].
Auch konnte das Wissen um genetische
Risikovarianten nur einen begrenzten
Einfluss auf einen Therapieerfolg ha-
ben [37], zumal eine Risikovorhersage
von komplexen Erkrankungen natur-
gemifd fehlerbehaftet ist [29, 38]. So
kann beispielsweise ein vorhersagba-
res AMD-Risiko nur fiir etwa 1,2%
der Bevolkerung mit hoher Zuversicht
bestimmt werden [29], obwohl die ge-
netischen Grundlagen der Erkrankung
bereits heute recht gut verstanden sind.
Ungeachtet dessen sind genetische Infor-
mationen zu komplexen Erkrankungen
entscheidend, um die Mechanismen der
jeweiligen Erkrankungsentstehung zu
verstehen und aus diesen Erkenntnis-
sen gezielte Behandlungsoptionen zu
entwickeln. Komplettiert werden sol-
che Herangehensweisen durch neuere
Studien, die genetische Faktoren su-
chen, die speziell den Krankheitsverlauf
beeinflussen [35, 39].

Fazit fiir die Praxis

Zusammengefasst erweist sich unser
Verstandnis der Genetik von mono-
genen Netzhauterkrankungen bereits
heute als eine wichtige Grundlage zur
Entwicklung individuell zugeschnitte-
ner therapeutischer MaBnahmen im
Sinne einer individualisierten Prazisi-
onsmedizin. Zudem erlaubt das Wis-
sen um die genetische Ursache einer
Netzhautdystrophie Risikopersonen
innerhalb einer betroffenen Familie
zu identifizieren und diese dann friih-
zeitig einer Therapie zuzufiihren. Bei
der Behandlung von komplexen Netz-
hauterkrankungen spielt die zugrun-
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de liegende Genetik bisher eine eher
untergeordnete Rolle. Selbst bei kom-
plexen Netzhautdegenerationen wie
der AMD, deren genetische Grundlagen
schon heute recht umfassend verstan-
den sind, reichen unsere Kenntnisse
bisher nicht aus, um das Erkrankungs-
risiko zufriedenstellend vorherzusagen
oder eine Entscheidung fiir oder gegen
eine Therapieoption treffen zu konnen.
Die Genetik des Erkrankungsrisikos, be-
sonders auch des Krankheitsverlaufs
bzw. des Schweregrads der Erkrankung
zu verstehen, ist dennoch zwingend,
um zukiinftige innovative Therapieop-
tionen entwickeln zu kénnen.
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