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Einleitung

Gentherapie am Auge behandelt oder
verhindert genetisch bedingte Erkran-
kungen des visuellen Systems auf der
genetischen Ebene. Durch das Einbrin-
gen einer therapeutischen Gensequenzin
die betroffenen Zellen verspricht dieses
innovative Verfahren, bisher unheilba-
re oder nur unzureichend behandelbare
Erbkrankheiten therapieren zu koénnen
bzw. deren Progression aufzuhalten.
Die Idee der Gentherapie, deren kon-
zeptioneller Ursprung den 1960er- und
1970er-Jahren entstammt [9], besteht
darin, die Ursache der Erbkrankheiten,
d. h. die Fehlfunktion des jeweils defek-
ten Gens, durch das Einbringen gesunder
Kopien zu beheben. Bei Gentherapie im
klassischen Sinne handelt es sich in der
Regel um eine Behandlung einer mo-
nogenen autosomal-rezessiv vererbten
Krankheit, die durch eine Mutation zum
Funktionsverlust oder kompletten Aus-
fall desvom betroffenen Allel abgeleiteten
Zielproteins fithrt (loss of function). Die
exogen eingebrachte ,Wildtyp“-Gense-
quenz stellt die Voraussetzung fir die
Produktion des physiologisch aktiven
Proteins wieder her und hemmt damit
die Krankheitsentstehung/-progression.
Inzwischen ist gezeigt worden, dass
mittels Uberexpression der Wildtyp-
Gensequenz auch autosomal-dominant
wirksame gain of function Mutationen
behandelbar sind. In bestimmten Féllen
erscheint es zusétzlich sinnvoll, z. B. mit-
tels siRNA (short interfering RNA) die
Expression des Gens mit gain of function
Mutation posttranskriptionell zu limitie-
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ren [8] und dadurch die Konzentration
des toxischen Proteins zu reduzieren.

Eine der vielversprechendsten neuen
Richtungen in der Gentherapie ist das
sog. ,,CRISPR-CAS9 Genome Editing"
(CRISPR: clustered regularly interspaced
short palindromic repeats; Cas: CRISPR-
associated) [23]. Diese Methode basiert
auf Bestandteilen eines bakteriellen Ab-
wehrsystems, welches ein gezieltes Edi-
tieren bestimmter DNA-Sequenzen im
Erbgut nahezu jeder lebendigen Zel-
le ermoglicht. Mittels einer exogenen
RNA-Sonde (sgRNA: single guide RNA)
koénnen bestimmte DNA-Sequenzen des
Erbguts spezifisch erkannt werden, um
sie mithilfe der CAS9-Nukleasen zu ent-
fernen. Nach dem Abbau konnen die
freien DNA-Enden des Genoms mittels
NHE] (non-homologous end joining)
oder HDR (homology-directed repair)
wieder zusammengefiigt werden. Die
Methode kann verwendet werden, um
z.B. eine Missense-Mutation zu entfer-
nen bzw. diese durch Wildtyp-Sequenz
zu ersetzen.

Uber die monogenen Erbkrankhei-
ten hinausgehend bietet Gentherapie
die Moglichkeit, multifaktoriell bedingte
Krankheiten im Rahmen eines allgemei-
neren Ansatzes zu therapieren. In diesem
Zusammenhang wird die allgemeine
Widerstandsfahigkeit der betroffenen
Zellen gegeniiber pathologischen Stress-
faktoren (z.B. oxidativer Stress) gezielt
und mittels einer gentherapiebedingten
Uberexpression von Schutzfaktoren ver-
starkt. Damit konnte das Fortschreiten
der zelluliren Degeneration unabhin-
gig von der unterliegenden Pathologie

unspezifisch behandelt werden. Die
Anwendbarkeit dieser Behandlungsstra-
tegien in Gentherapie umfasst ein breites
Spektrum von Krankheiten, z. B. Horn-
hautdystrophien, Glaukom, diabetische
Retinopathie, altersbedingte Makula-
degeneration (AMD) und hereditéire
Netzhautdystrophien. Hier begrenzen
wir die Diskussion hauptsichlich auf
die klassische retinale Gentherapie, d. h.
die Therapie von monogenen, rezessiven
Erbkrankheiten der Netzhaut.

Wie erreichen die Gen-
sequenzen die Zielzellen
am Auge?

Ein wichtiger Bestandteil der erfolgrei-
chen Gentherapie ist das Einbringen
der therapeutischen Gensequenz in die
Kerne der Zielzellen. Damit die therapeu-
tischen Gensequenzen die Zellmembran
effizient durchqueren koénnen, miissen
biomolekulare Vehikel, sog. Vektoren,
eingesetzt werden.

Als Vektoren eignen sich prinzipiell
unterschiedliche biomolekulare Struktu-
ren. Der ideale Vektor muss aber vie-
le Voraussetzungen erfiillen. Unter an-
derem soll er die therapeutische Gen-
sequenz in die richtige Zelle mit ho-
her Selektivitit, Effizienz und Sicherheit
einschleusen. Dafiir soll er idealerwei-
se kaum Immunreaktionen auslésen und
dariiber hinaus eine ausreichende Kapa-
zitdt fur die betroffenen Gensequenzen
bieten.

Dank ausdauernder Erforschung und
biotechnologischer Entwicklung sind
zahlreiche potenzielle Vektoren fiir
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Tab. 1

Die wichtigsten rekombinanten viralen Vektoren im Vergleich

Lentiviren (LV) Adenoassoziierte Viren (AAV)
Familie Retroviridae Parvoviridae
Nukleinsdure RNA DNA
Hiille Behiillte Unbehiillte
Durchmesser (nm) 80-100 25
Transgenkapazitat (kb) 10 48
Integration ins Zellgenom Willkirlich Kaum bis keine®
Immunogenitatim Auge Deutlich AuBerst gering

Relevante Erbkrankheiten Morbus Stargardt, Usher-Syndrom 1B, Achromatopsie, Retinitis pigmentosa, Choroideremie,

(Bsp.) Makuladystrophien Leber’sche kongenitale Amaurose, Makuladystrophien
Vorteile Transduktion mitotischer und postmitotischer Nicht humanpathogen, duBerst sicher,
Zellen, groRRere Kapazitat Vielzahl an Serotypen mit unterschiedlichen Gewebe-
affinitaten
Nachteile Immunogenitat, Unvertraglichkeit Limitierte Transgenkapazitat

“Integrationswahrscheinlichkeit beim Wildtyp-AAV liegt bei ca. 0,1 %, im Falle von rekombinanten AAVs
sind die fUr Integration verantwortlichen Gensequenzen (Rep/Cap) nicht mehr Teil des Virusgenoms

die Gentherapie verfiigbar geworden.
Grundsitzlich kénnen diese Vehikel in
zwei Gruppen eingeteilt werden: die ,;vi-
ralen® und die ,,nichtviralen® Vektoren.

Bei den nichtviralen Vektoren [24]
handelt es sich hauptsichlich um mit-
tels Nanotechnologie entwickelte, syn-
thetische biomolekulare Strukturen, die
aus polymer- oder lipidbasierten Hiillen
oder Kapsiden bestehen. Solche syntheti-
schen Vehikel bieten ein giinstiges Immu-
nogenititsprofil und eine ausreichende
Kapazitit auch fiir linge Gensequenzen
[26]. Allerdings sind ihre Transduktions-
effizienz und Selektivitit noch stark ver-
besserungswiirdig, und deshalb ist ihre
Einsetzbarkeit in der Gentherapie aktuell
relativ begrenzt [2].

Die viralen Vektoren sind jedoch ak-
tuell die am meisten verwendeten Vehi-
kel, mit einem Anteil von ca. 70 % aller
gentherapeutischen Versuche [24]. Mit
dem Einsatz viraler Vektoren wird auf der
Milliarden Jahre langen Evolution der Vi-
ren, die die Transduktionsefhizienz ihrer
Zielzellen perfektioniert hat, aufgebaut.
Wihrend des Herstellungsprozesses wird
das virale Genom mittels Rekombinati-
onstechnologien durch eine therapeuti-
sche Gensequenzersetzt. Dies fithrtdazu,
dass das Virus seine Replikationsféhig-
keit verliert, die Transduktionseffizienz
aber erhalten bleibt [22].

Verschiedene Serotypen von Viren
haben sich wihrend ihrer Evolution
auf die Transduktion bestimmter Zellen
spezialisiert. Diese natiirlich vorkom-
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mende Spezialisierung wird wiahrend
der Auswahlverfahren desjenigen Sero-
typs des Virus berticksichtigt, der zu den
relevanten Zielzellen fiir die Genthera-
pie passt und ,off-target® Transduktion
minimiert. Die Entwicklung effizienter
viraler Vektoren hat sich aber nicht auf
natiirlich vorkommende Virusvarianten
beschrankt. Unterschiedliche Methoden
zur biomolekularen Modifikation der
viralen Kapside und Hiillen wurden ent-
wickelt und die Vektoren damit noch
weiter fiir spezifische Zwecke optimiert
[6,12]. Um die Spezifitit der Gentherapie
weiter zu verbessern, werden spezifische
Promotoren verwendet, die idealerweise
nur in den Zielzellen exprimiert werden
[11].

Die meistverwendeten rekombinan-
ten viralen Vektoren in der Gentherapie
am Auge sind Lentiviren und adenoasso-
ziierte Viren (AAV). Beide Vektoren wei-
sen deutliche Unterschiede auf (B Tab. 1).
AAVswerden wegen ihrer duflerst gerin-
gen Immunogenitit, ihrer hohen Trans-
duktionseffizienz und ihrem guten Si-
cherheitsprofil am haufigsten in der oph-
thalmologischen Gentherapie benutzt.

Die Blut-Retina-Schranke stellt eine
physiologische Barriere nicht nur fiir
Krankheitserreger und Toxine, sondern
auch fiir gentherapeutische Vektoren
dar. Um ihre Zielzellen z. B. in der Netz-
haut erreichen zu kénnen, miissen die
Vehikel in der Regel daher direkt in das
Auge injiziert werden. Die Auswahl der
Injektionsmethode hat wichtige Auswir-

kungen auf die Effizienz, die Sicherheit
und den Gesamterfolg der Genthera-
pie. Die am héufigsten verwendeten
Injektionsmethoden in der okuldren
Gentherapie sind die intravitreale (IVT)
und die subretinale (SR) Injektion.

Mit der IVT-Route wird der Vektor
in den Glaskorper (Vitreus) injiziert, der
den Bulbus zu 90 % ausfiillt und aus Was-
ser (98 %), Hyaluronsiure (2 %) und ver-
einzelten Kollagenfasern besteht. Diese
Injektionsmethode ist relativ sicher und
unkompliziert, hat aber gewisse Nach-
teile fir die Gentherapie: Das Volumen
des Glaskorpers sowie die Anzahl der
exponierten ,,off-target“ Zellen ist relativ
grof. Um das auszugleichen, ist eine ho-
here Injektionsdosis nétig, die sich aber
negativ auf die Immuntoleranz im Auge
auswirken kann. Uber das Auge hinaus
ist mit einer hoheren Dosis auch mit ei-
ner erh6hten Bioverfiigbarkeit auferhalb
des Auges zu rechnen, was sich ebenfalls
ungiinstig auf das Sicherheitsprofil aus-
wirken kann [18]. Wenn die Zielzellen
sich in den tiefen Schichten der Netzhaut
befinden (z. B. Photorezeptoren oder re-
tinales Pigmentepithel), zeigt schlief3lich
die IVT-Injektion eine geringere Trans-
duktionseffizienz im Vergleich zur SR-
Injektion.

Bei der SR-Injektion wird die the-
rapeutische Losung in den potenziel-
len Raum zwischen der Photorezeptor-
schicht (PRL) und dem retinalen Pig-
mentepithel (RPE) gegeben. In manchen
Protokollen wird dieser Raum vorab
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mit Kochsalzlosung eréffnet und erst in
einem zweiten Schritt die Vektorlosung
in den subretinalen Raum injiziert. In-
nerhalb von ca. 24h wird die Losung
fast komplett resorbiert, und damit kehrt
die Netzhaut wieder in die Normallage
zuriick. Die SR-Injektion hat zahlreiche
Vorteile: hohere Transduktionseflizienz
der RPL- und RPE-Zellen, geringere
Anzahl der ,off-target” Zellen, geringere
Injektionsvolumen, geringere absolute
Menge an Vektorpartikeln, giinstigeres
Biodistributionsprofil und die Mog-
lichkeit, begrenzte Netzhautareale zu
behandeln (z.B. die zentrale Makula).
Die SR-Injektion ist aber ein relativ auf-
wendiger Eingriff, der hochqualifizierter
Fachkrifte bedarf. Durch neue Entwick-
lungen in der chirurgischen Robotik in
der Augenheilkunde wird daran gear-
beitet, die SR-Injektionen noch sicherer
und kontrollierter zu machen.

Das Auge im Visier der aktuellen
Gentherapieforschung

Als doppelt angelegtes, leicht zugéingli-
chesund immunprivilegiertes Organ bie-
tet das Auge viele Vorteile fiir die Erfor-
schung und Anwendung der Genthera-
pie. Die Sehleistung des Auges kann mit-
tels zahlreicher Modalititen untersucht
und gemessen werden. Das zweite, nicht
behandelte Auge wird oft als Kontrollau-
ge benutzt. Die hohe Empfindlichkeit des
Auges fithrt dazu, dass auch die kleinsten
Veranderungen in Sehschirfe, Farbwahr-
nehmung und Gesichtsfeld fiir den Pro-
banden leicht zu bemerken sind. Elektro-
physiologische (ERG) und funktionsto-
mographische (fMRT) Untersuchungs-
methoden ermoglichen sogar die Erfas-
sung und Quantifizierung unbewusster
Verdnderungen des Sehvermogens. Zu-
dem erfasst die Augenheilkunde ein brei-
tes Spektrum von Erbkrankheiten mit gut
definierten Pathomechanismen.

Leber'sche kongenitale Amaurose

Die autosomal-rezessiv vererbte Le-
ber'sche kongenitale Amaurose vom
genetischen Subtyp 2 (LCA2) ist die ers-
te Erbkrankheit des Auges, fiir die eine
gentherapeutische Behandlung entwi-
ckelt wurde. LCA2 liegen loss of function

Mutationen des RPE65-Gens (retinal
pigment epithelium-specific 65 kDa pro-
tein) zugrunde, das fiir das gleichnamige
Isomerohydrolase-Enzym kodiert. Das
RPE65-Enzym sorgt in den RPE-Zel-
len der Netzhaut fiir die Regeneration
der toxischen Retinolform im Sehzyklus
(von all-trans- zu 11-cis-Retinol). Der
Funktionsverlust von RPE65 und die
nachfolgende Akkumulation des toxi-
schen all-trans-Retinols fithren schon
in der frithen Kindheit zur progressi-
ven Degeneration des RPEs und der
Photorezeptoren.

Die Ergebnisse einer zweijihrigen
Klinischen Follow-up-Studie (NCT007
49957) haben nach SR-Injektion mit
rAVV (rAAV2-CB-hRPE65) eine Ver-
besserung der Sehleistung bei neun
von zwolf Probanden gezeigt [20]. Die
jingsten Patienten scheinen von dieser
Therapie am meisten profitiert zu ha-
ben. Andere Studien zeigten eine weitere
Progression des Zellverlustes auch nach
dem Therapiebeginn und eine langsame
Verschlechterung der Sehleistung ab drei
Jahren nach der Therapie [5, 10].

Achromatopsie

Die Achromatopsie (ACHM) ist eine
autosomal-rezessive Erbkrankheit, die
eine angeborene komplette Farbblind-
heit verursacht. Weiterhin duflert sich
die ACHM bei Betroffenen in einer stark
reduzierteren Sehleistung, starker Licht-
scheu und Augenzittern (Nystagmus).
Die am meisten verbreiteten Unterfor-
men der Achromatopsie werden von
Funktionsverlustmutationen der Gene
CNGA3 und CNGB3 (CNG: cyclic nu-
cleotide-gated channel) verursacht. Bei-
de Gene kodieren fiir unterschiedliche
Untereinheiten des gleichen cGMP-ge-
steuerten Kationenkanals (CNG-Kanal),
der sich in den Zapfen-Photorezeptoren
befindet [15].

Nachvielversprechenden Ergebnissen
der ACHM-Gentherapie mit rAAV-Vek-
toren im Tierversuch [3, 14] haben die
ersten interventionellen klinischen Stu-
dien fiir CNGA3 (NCT02610582) und
CNGB3 (NCT02599922) ACHM in 2015
und 2016 begonnen. Die Ergebnisse die-
ser Studien werden voraussichtlich 2017
und 2018 verfiigbar sein. Eine weitere
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von Netzhauterkrankungen

Zusammenfassung

Eine Reihe von Netzhauterkrankungen
hat bekannte genetische Ursachen, die
prinzipiell durch Gentherapie behandelt
werden konnen. Diese Ubersicht stellt das
Prinzip und die Besonderheiten der okulédren
Gentherapie dar, fasst den aktuellen
Stand der Forschung bis hin zur klinischen
Anwendung zusammen und gibt einen
Ausblick auf aktuelle Entwicklungen der
Gentherapie am Auge.

Schliisselworter
Gentherapie - Netzhaut - Monogene
Erbkrankheiten - AAV

Gene therapy as a treatment
for retinal disease

Abstract

A wide spectrum of retinal diseases with
well-defined genetic causes can potentially
be treated using gene therapy. In this
review, we present the basic principles
and peculiarities of ocular gene therapy.
We discuss the current state of research
and transition into clinical application, in
addition to recent developments in gene
therapy for the eye.

Keywords

Gene therapy - Retina - Monogenic
hereditary disorders - Adeno-associated
virus

interventionelle Studie zur CNGA 3-asso-
ziierten Achromatopsie (NCT02935517)
ist fur 2017 geplant.

Choroideremie

Choroideremie (CHE) ist eine rezessive
X-chromosomal bedingte Erbkrankheit,
die durch Mutationen des CHM-Gens,
das fiir REP1 (Rab-escort protein 1) ko-
diert, zur kompletten Atrophie der Ader-
haut, RPE und Netzhaut fiithrt. Die ers-
ten Schritte der Krankheitsprogression
sind bei CHE-Betroffenen schon in der
ersten Lebensdekade zu erkennen. Die

medizinische genetik 2 - 2017 | 205
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Atrophie beginnt in der mittleren Pe-
ripherie der Netzhaut und schreitet in
Richtung Zentrum fort. In der fiinften
Lebensdekade, vor einer kompletten Er-
blindung, bleibt nur eine kleine zentrale
Restinsel auf der Netzhaut, die nur einen
begrenzten Tunnelblick ermdglicht. Die
heterozygoten Tragerinnen der Mutation
bemerken normalerweise keine Sympto-
me der Krankheit. Allerdings sind in der
Regel Verdnderungen der Netzhaut bei
solchen Patientinnen bei einer genaueren
Untersuchung zu sehen [25].

Eine sicherheitsorientierte Phase I-
Studie (NCTO01461213) hat eine signi-
fikante Verbesserung nach einer SR-
Injektion der rAAV2.REP1 gezeigt [13].
Sechs weitere interventionelle Phase I/11
klinische Studien mit rAAV-Vektoren
werden seit 2015 durchgefiihrt, zwei da-
von (NCT02341807 und NCT02407678)
sind in der Patientenrekrutierungspha-
se. Die ersten Ergebnisse aus Phase II-
Studien werden voraussichtlich 2017
verfiigbar sein.

Die gro3ten Herausforderungen
und Zielsetzungen

Die wichtigsten Herausforderungen der
retinalen Gentherapie sind die Vermei-
dung sicherheitsrelevanter Nebenwir-
kungen, wie Entziindung oder Reak-
tionen des Immunsystems, sowie die
dauerhafte Wirksamkeit der Genthera-
pie.

Da die Gentherapie derzeit auf re-
kombinanten AAV-Viren basiert, besteht
die Moglichkeit, dass die angeborenen
und erworbenen antiviralen Immun-
mechanismen des Korpers auch gegen
gentherapeutische Vektoren aktiv wer-
den [16]. Bereits bestehende Antikdrper
gegen AAV konnen z.B. die Transduk-
tionseffizienz der rekombinanten AAV
negativ beeinflussen. Auflerdem kann
eine zelluldire Immunantwort behandelte
Zielzellen als virusinfiziert erkennen und
beseitigen [21].

Das Auge ist eines der wenigen im-
munprivilegierten Organe im Korper
[19]. Fir die Gentherapie bedeutet dies,
dass das Auge und besonders dessen
Netzhaut eine relativ gute immunologi-
sche Vertraglichkeit fiir Vektoren haben.
Um das Risiko fiir eine Immunreaktion
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weiter zu senken, werden kurz vor und
nach der Behandlung Kortikosteroide
eingesetzt [7].

Beziiglich der Wirksambkeit haben die
rAAV (rekombinanten AAV) eine sehr
gute Transduktionseffizienz im Tiermo-
dell gezeigt. In unterschiedlichen Tier-
modellen zeigten sich oft bei denselben
rAAV-Stimmen deutliche Unterschiede
in der Transduktionseffizienz der retina-
len Zellen. Zum Beispiel wies rTAAV'5 eine
hohe Transduktionseffizienz in RPE-Zel-
len bei Miusen und Primaten auf, jedoch
nicht bei Ratten und Hunden [17]. Daher
sind Versuche in Primaten und am Pa-
tienten unabdingbar. Das Potenzial der
Gentherapie zur Verbesserung der Seh-
funktion wurde in unabhangigen klini-
schen Versuchen gezeigt [4, 13].

Die Dauerhaftigkeit der therapeuti-
schen Wirkung ist insbesondere zu ei-
nem relevanten Thema geworden, weil
die Ergebnisse von zwei LCA-Studien ge-
zeigt haben, dass die Effekte der Thera-
pie nach ca. drei Jahren langsam nach-
lassen und weiterer Zellenverlust sowie
Abnahme der Sehleistung zu beobachten
sind. Die dafiir verantwortlichen Mecha-
nismen sind noch nicht geklért [1, 10].

Fazit fiir die Praxis

== Neue Fortschritte in der Genthera-
pie umfassen ein immer breiteres
Spektrum von Krankheiten.

== Auch Patienten mit komplexen
ophthalmologischen Pathologien
wie Glaukom und AMD kénnten eines
Tages von Gentherapie profitieren.

== Erste Ergebnisse der klinischen
Studien zeigten eine signifikante
Verbesserung der Sehleistung bei Pa-
tienten mit Leber’scher kongenitalen
Amaurose und Choroideremie.

== Weitere klinische Studien fiir Choroi-
deremie sind bereits in der Rekrutie-
rungsphase.

== Fragen zur Dauer der Wirksamkeit
von Gentherapie miissen noch ge-
klart werden.
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