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Mikroglia und Immuntherapien
bei degenerativen
Netzhauterkrankungen

Hintergrund

Als residente Gewebsmakrophagen spie-
len Mikrogliazellen eine entscheidende
Rolle bei der Kontrolle angeborener
Immunmechanismen des Gehirns und
der Netzhaut. In der gesunden Netz-
haut sorgen sie vor allem durch ihre
kontrollierte Phagozytosefunktion und
Freisetzung von neurotrophen Fakto-
ren für die Gewebsintegrität. In der
erkrankten Netzhaut ist jedoch sehr
häufig eine chronische Mikrogliareakti-
vität nachweisbar [41]. Die Reaktivität
von Mikroglia stellt dabei einen gemein-
samen Pathomechanismus bei einer
Vielzahl von monogenen und multifak-
toriell vererbten retinalen degenerativen
Erkrankungen dar. Diese zelluläre Im-
munaktivierung tritt häufig gleichzeitig
mit oder bereits vor Beginn des durch
genetische Veränderungen hervorge-
rufenen programmierten Zelltods in
der Netzhaut auf. Durch ihre potenten
proinflammatorischen und neurotoxi-
schen Eigenschaften tragen chronisch
aktivierte Mikroglia so maßgeblich zum
Fortschreitender retinalenDegeneration
bei.

Homöostatische Funktionen
vonMikroglia in der gesunden
Netzhaut

Mikrogliazellen nehmen strategisch
günstige Positionen in den beiden plexi-
formen Schichten der adulten Netzhaut
ein (. Abb. 1a, Schaubild.Abb. 2). Diese
besondere Verteilung der Mikroglia und
derenAusschluss von denKörnerschich-
ten ist besonders in der menschlichen

Retina offensichtlich, wobei regional vor
allemder Bereich umdie Fovea von einer
hohen Mikrogliadichte gekennzeichnet
ist [14, 53].Dementsprechend scheint die
Region um dieMakula herum besonders
empfänglich für zelluläre Immunaktivie-
rung zu sein, was von hoher Bedeutung
für makuläre Netzhauterkrankungen ist.

Homöostatische Mikrogliafunktio-
nen in der unreifen Netzhaut sind mit
der Kontrolle der entwicklungsabhängi-
gen Apoptose, der Phagozytose von Zell-
trümmern, der Bildung von neuronalen
Verbindungen und der Orientierung des
primären Netzhautgefäßwachstums ver-
bunden [56, 59]. Eine weitere entschei-
dende Funktion von Mikrogliazellen
ist die Modulation der Synaptogenese.
Im Gehirn führt der genetische Knock-
out der mikrogliaspezifischen Proteine
DAP12 und CX3CR1 in der Maus zu
schweren Defekten in der Synaptoge-
nese [52]. In der unreifen Retina wird
das synaptische Pruning zur korrek-
ten Verschaltung neuronaler Netzwerk
ebenfalls durch mikrogliale Phagozytose
gesteuert [9]. Dabei sezernieren retinale
Ganglienzellen der sich entwickelnden
Netzhaut den Komplementfaktor C1q,
der als Schlüsselfaktor der klassischen
Komplementkaskade wirkt. Anschlie-
ßend dekoriert der aktivierte Komple-
mentfaktor C3 entsprechende Synapsen,
um ihre komplementrezeptorabhängige
Phagozytose in Mikroglia anzuschalten
[9].

In der reifen Netzhaut bilden ver-
zweigte Mikrogliazellen ein komplex
organisiertes territoriales Netzwerk, in
dem ihre Ausläufer ständig die Ober-
fläche der Neuronen in einem defi-

nierten Bereich abscannen (. Abb. 3a).
Durch ihr dynamisches Verhalten ist
die Mikrogliapopulation in der Lage, in
kürzester Zeit eine umfassende Überwa-
chung der gesamten Retina zu erreichen
[13]. Mikrogliazellen überwachen ih-
re Umgebung mit einem Repertoire
von Oberflächenproteinen für Zytokine,
Chemokine, Komplementkomponenten,
Antikörper und besonderen Rezeptoren
für veränderte Zelloberflächenstruktu-
ren. Die hohe Empfindlichkeit dieser
Mikrogliasensoren verlangt dement-
sprechend, dass ihre Aktivierung durch
inhibitorische Mechanismen in der ge-
sunden Retina streng kontrolliert wird.
Einerseits spielen lösliche Faktoren des
retinalen Pigmentepithels wie TGF-
beta eine Rolle, die einen eher anti-
inflammatorischen Immunzellphänotyp
induzieren [51]. Andererseits ist eine
direkte physikalische Wechselwirkung
von Mikroglia mit anderen Netzhaut-
zellen bedeutend. Das Transmembran-
Glykoprotein CD200 wird auf mehre-
ren retinalen Zellen exprimiert, ein-
schließlich des vaskulären Endothels,
der Photorezeptoren und der Gangli-
enzellen, und dient als inhibitorischer
Ligand fürdenaufMikrogliazellen expri-
mierten CD200-Rezeptor [49]. CD200-
Bindung an CD200-R auf Mikroglia
löst eine inhibitorische intrazelluläre
Signalkaskade aus, um die überschie-
ßende proinflammatorische Aktivierung
zu blockieren [27]. CX3CL1 (Fraktalkin)
ist ein weiterer Mikrogliaregulator, der
konstitutiv von gesunden retinalen Neu-
ronen und Endothelzellen freigesetzt
wird und an CX3CR1 auf Mikroglia
bindet, um deren Neurotoxizität zu ver-
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Abb. 18 Iba1-Immunfärbung (grün) vonMikrogliazellen in histologischen Schnitten einer awildty-
pischen (WT) bzw.b Fam161a-defizientenMausnetzhaut. Zur Visualisierung der Netzhautschichten
wurdemittelsDAPI eineGegenfärbungderZellkerne (blau) durchgeführt.aRamifizierteMikrogliazel-
lender gesundenNetzhaut sind inder inneren (IPL) undäußeren (OPL) plexiformenSchicht zu finden.
bDurchdieDegenerationder äußerenNetzhautwirddie äußere Körnerschicht (ONL) signifikant dün-
ner undMikrogliazellenwandern in die äußere Retina bzw. in den subretinalen Raum. (GCL ganglion
cell layer)

hindern [10]. Schließlich sezernieren
Müller-Zellen den diazepambindenden
Inhibitor (DBI), einen Liganden für das
Translokatorprotein (18 kDa) (TSPO),
das in aktivierten Mikrogliazellen ex-
primiert wird, und begrenzen somit die
Mikrogliareaktivität [32, 61].

Mikroglia und Netzhaut-
erkrankungen

Die Mikrogliaaktivierung galt lange Zeit
als nebensächliche Begleiterscheinung
bei degenerativen Netzhauterkrankun-
gen.Mittlerweile istdieserProzess jedoch
als pathophysiologisch relevanterKrank-
heitsmechanismus anerkannt (Schaubild
. Abb. 2). Die morphologische Trans-
formation und Migration der residenten
Mikrogliamarkiert dieAktivierungspha-
se dieser Reaktion. In der Effektorphase
sammeln sich Mikroglia in den geschä-
digten Schichten an und interagieren
mit infiltrierenden Blutzellen, die durch
eine geschwächte Blut-Retina-Schranke
eindringen können.

Mikroglia und erbliche
Netzhautdystrophien

Mikroglia bei Retinitis pigmentosa

Hereditäre Netzhautdegenerationen bil-
den eine große Gruppe von Augener-
krankungen mit Mutationen in mehr als
250 bisher identifizierten kausalen Ge-
nen (https://sph.uth.edu/retnet/). Apop-

tose und retinaler Zelltod sind wesentli-
che Bestandteile degenerativer Prozesse,
die zusammen mit dem genetisch be-
dingten Funktionsverlust die strukturel-
le Integrität der Netzhaut schädigen [8].
Das selektive Absterben von Stäbchen-
photorezeptoren bei Retinitis pigmento-
sa (RP), der häufigsten Form von erb-
lichen Netzhautdystrophien, ist eng mit
der Anlockung reaktiver Mikroglia asso-
ziiert [25]. Dabei weisen die Lokalisation
von Mikroglia in der äußeren Körner-
schicht und große Menge phagozytier-
ter Photorezeptoraußensegmente darauf
hin, dass das sekundäre Absterben von
Zapfenphotorezeptoren bei der RP mög-
licherweise aktiv durch Mikroglia indu-
ziert sein könnte.

Mikroglia bei Mausmodellen
erblicher Netzhautdystrophien

Die erste stammspezifische Netzhautde-
generation bei Mäusen wurde vor über
90 Jahren identifiziert [36]. Diese bes-
tens untersuchte natürliche Mauslinie,
die auch als rd1 (retinal degeneration 1)
bezeichnet wird, trägt eine Nonsense-
mutation im Pde6b-Gen, das für eine
membrangebundene cGMP-Phospho-
diesterase kodiert, die in der Phototrans-
duktionskaskade in Stäbchen essenziell
ist. Rd1-Mäuse zeigen einen schnellen
Beginn und eine starke Netzhautde-
generation mit einem gut definierten
Zeitverlauf [11].UmfassendeGenexpres-
sionsanalysen mit Netzhautgewebe von

sehr jungen rd1Mäusen zeigten eine Re-
duktion der photorezeptorspezifischen
Genexpression, gefolgt von erhöhten
apoptose- und neuroinflammationsspe-
zifischen Transkripten einschließlich der
Überexpression des Komplementfaktors
C1qa am postnatalen Tag 14 (PN14)
[57]. Rd1 Netzhäute weisen zum sel-
ben Zeitpunkt eine signifikante Anzahl
von proliferierenden reaktiven Mikro-
gliazellen in der äußeren Körnerschicht
auf, die Tumornekrosefaktor und das
Chemokin CCL2 sezernieren. Solche
Mikrogliazellen sind auch in homozy-
goten rd10 Mäusen nachweisbar, die
eine Missensemutation im Pde6b-Gen
tragen [66]. Die Kreuzung von rd10-
Mäusen mit Tieren, die im CCL2-Re-
zeptor (Ccr2-/-) defizient sind, führte zu
einer signifikanten Reduktion reaktiver
Mikroglia und einer verzögerten De-
generation mit länger erhaltener ERG-
Funktion [24]. Dies deutet darauf hin,
dass eine Hochregulierung der CCL2-
CCR2-Achse während der Anfangspha-
se der Netzhautdegeneration notwendig
ist, um eine Mikrogliaaktivierung und
möglicherweise Makrophagenrekrutie-
rung auszulösen und dadurch zusätzlich
Netzhautschäden zu verursachen. Un-
sere Arbeitsgruppe konnte die zeitliche
Verbindung der Mikrogliaaktivierung
mit der Photorezeptorapoptose bei Re-
tinoschisin-defizienten (Rs1h-/Y) Mäu-
sen untersuchen, einem Modell für die
X-gebundene Retinoschisis [65]. Dabei
konnten DNA-Mikroarrays zeigen, dass
die transkriptionelle Reaktion von Mi-
kroglia dem Zelltod in der Netzhaut
zeitlich deutlich vorausgeht [21]. Die
frühe Mikrogliose steht auch in direk-
tem Zusammenhang mit der Netzhaut-
degeneration im Fam161-defizienten
Mausmodell der Retinitis pigmentosa
[33, 42]. Mit dem Verlust der Photore-
zeptorschicht wandern Mikrogliazellen
in die äußere Netzhaut ein (. Abb. 1b)
und es erfolgt die Auflösung des rami-
fizierten Zellnetzwerks, verbunden mit
einer morphologischen Transformation
zu großen neurotoxischen Phagozyten
(. Abb. 3b).
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Mikroglia und altersabhängige
Makuladegeneration

Die altersbedingte Makuladegeneration
(AMD) ist einemultifaktorielle, komplex
genetische degenerative Erkrankung der
zentralen Netzhaut, die in der Spätphase
zu signifikantem Sehverlust führt. In der
frühen und intermediären asymptoma-
tischen Phase zeigen sich im Fundus
von Patienten Pigmentveränderungen
und das Auftreten von weichen Drusen.
Spätformen der AMD sind durch geo-
graphische Atrophie (trockene AMD)
bzw. neovaskuläre Prozesse (feuchte
AMD) gekennzeichnet. Bei der feuchten
AMD kann vor allem das Einspros-
sen von Aderhautgefäßen im Bereich
der Makula in den subretinalen Raum
mit Ödembildung, Blutungen und RPE-
Ablösungen schwere Komplikationen
verursachen [30].

Mikroglia bei der AMD

UmfangreichegenomweiteAssoziations-
studien und Metaanalysen belegen eine
genetisch bedingte Dysregulation des
Komplementsystems bei der AMD [19].
Darüber hinaus sind aktivierteMikroglia
eng mit Drusen von Patienten mit frü-
her AMD assoziiert [37]. Patienten mit
geographischer Atrophie zeigen beson-
ders amöboide Mikroglia in der äußeren
Körnerschicht [25]. Ein systembiologi-
scher Ansatz, der die Transkriptome von
menschlichen Spenderaugen mit und
ohne AMD verglichen hat, zeigte eine
starke Überexpression von Mikroglia-
rezeptoren und verschiedenen Komple-
ment- und Chemokin-mRNAs in AMD-
Proben. Dies deutet darauf hin, dass die
Mikrogliaaktivierung zu den frühzeitig
auftretendenund lang anhaltenden chro-
nischen Mechanismen bei der AMD-
Pathogenese zählt [50]. Von besonderem
Interesse ist hierbei, dass die Akkumu-
lation von amöboiden Mikrogliaaggre-
gaten bzw. rekrutierten Makrophagen
möglicherweise als hyperreflektive Foci
in der optischen Kohärenztomographie
(OCT) dargestellt werden kann [2].
OCT hat die Methode die Diagnose-
und Therapieüberwachung von Netz-
hauterkrankungen revolutioniert und es
wäre ein erheblicher Fortschritt, wenn
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Zusammenfassung
Bei allen bisher im Detail untersuchten erbli-
chen Netzhautdegenerationen liegt eine dem
Erkrankungsverlauf abträgliche chronische
Aktivierung des angeborenen Immunsystems
zugrunde. Vor allem residente Mikrogliazellen
der Netzhaut und verschiedene Proteine des
löslichen Komplementsystems tragen zu einer
Schädigung von Photorezeptoren und retina-
lem Pigmentepithel bei. Sowohl spezifische
Zielstrukturen auf reaktiven Immunzellen als
auch fehlregulierte lösliche Immunmodulato-
ren bieten neue Ansatzpunkte für Therapien,
um das Überleben der Netzhaut trotz

genetischer Prädisposition zur Degeneration
zu fördern. Dieser Beitrag gibt Einblick in
die wesentlichen Regulationsmechanismen
der Netzhautimmunologie, diskutiert die
mögliche Verwendung immunologischer
Biomarker für die Netzhautdiagnostik und
zeigt immunmodulierende Therapieansätze
durch Biologika und endogene Botenstoffe
auf.

Schlüsselwörter
Netzhaut · Mikroglia · Komplement · Retinitis
pigmentosa · AMD

Microglia and immunomodulatory therapies for retinal
degenerative diseases

Abstract
A chronic activation of the congenital
immune system that is detrimental to the
course of the disease underlies all forms of
hereditary retinal degeneration investigated
in detail so far. Above all, resident microglial
cells of the retina and various proteins of the
soluble complement system contribute to
damage to photoreceptors and the retinal
pigment epithelium. Specific target structures
on reactive immune cells in addition to
dysregulated soluble immune regulators
offer a new starting point for treatments to
promote the survival of the retina, despite a

genetic predisposition to degeneration. In
this article, we provide an insight into the
essential regulatory mechanisms of retinal
immunology, discuss the potential use of
immunological biomarkers for diagnosing
retinal conditions, and demonstrate
immunomodulatory therapies through the
use of biological agents and endogenous
messengers.

Keywords
Retina · Microglia · Complement · Retinitis
pigmentosa · AMD

damit das Niveau der Immunzellenakti-
vierung innerhalb der Netzhaut in vivo
bestimmt werden könnte.

Mikroglia bei Mausmodellen
der AMD

In Ermangelung einer echten Makula
bei Nagetieren sind die meisten AMD-
Mausmodelle auf die Untersuchung von
einzelnen Merkmalen der menschlichen
AMD-Pathologie beschränkt. Dazu zäh-
len die generelle Netzhautdegeneration,
die RPE-Schädigung, die Neovasku-
larisierung und nicht zuletzt die Im-
munzellenaktivierung. Dennoch sind
diese Modelle sehr wertvoll, um Krank-
heitsmechanismen zu untersuchen und

therapeutische Strategien für die AMD
zu erproben.

Ein Modell für die geographische
Atrophie wird durch die Immunisierung
von Mäusen mit Carboxyethylpyrrol
(CEP)-konjugiertem Albumin indu-
ziert, einem Peroxidationsaddukt, das
in Drusen und Serum von AMD-Pati-
enten angereichert ist [29]. Die „CEP-
Maus“ ist bisher das einzige Modell, das
in der RPE-Schicht drusenartige Abla-
gerungen entwickelt. Bei diesen Tieren
werden proinflammatorische Mikroglia
im Bereich zwischen den RPE- und
Photorezeptoraußensegmenten gefun-
den. Bestrahlung von Mausaugen mit
intensivem Weißlicht oder fokussier-
tem Blaulicht sind ebenfalls etablierte
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Abb. 28 Schaubild zu den Phasen derMikrogliaaktivierung bei Netzhautdegenerationen. aUnter homöostatischenBe-
dingungen scannenMikrogliazellen die kompletteNetzhaut, wobei ihre Zellkörper in denplexiformen Schichten verbleiben
undnur diemotilen Fortsätze hohe Aktivität zeigen.b In der AktivierungsphasewerdenMikrogliazellen von beginnenden
Degenerationsprozessen der Photorezeptorschicht (z. B. bei Retinitis pigmentosa) oder der Ganglienzellschicht (z.B. beim
Glaukom) alarmiert und antwortenmit einermorphologischenTransition zu amöboiden Phagozyten undMigration. c In der
späteren Effektorphase sezernieren amöboideMikrogliazellenneurotoxischeSubstanzenund rekrutierendurch lösliche Fak-
toren inflammatorische Blutzellen. (RPE retinal pigmentepithelium,OSouter segments, IS inner segments,ONLouter nuclear
layer,OPLouterplexiform layer, INL innernuclear layer, IPL innerplexiform layer,GCLganglioncell layer). (Aus [34],mit freundl.
Genehmigung von Elsevier)

Modelle der trockenen AMD, die pho-
tooxidative Schäden und Netzhautde-
generation nachahmen [23]. In beiden
Lichtschadensmodellen tritt mit dem
Photorezeptorverlust eine starke Reak-
tivität von Mikrogliazellen auf, deren
Rhodopsin-positive Einschlüsse den Be-
obachtungen bei menschlichen AMD-
Gewebeproben ähneln [61, 62]. Die
chemotaktische Antwort von Mikro-
glia selbst wird hauptsächlich durch
photooxidativen Stress und gleichzei-
tige CCL2-Freisetzung aus gliotischen
Müller-Zellen ausgelöst [63].

Im Gegensatz zu den degenerati-
ven Effekten bei Lichtschadensmodellen
induziert die Laser-Photokoagulation
der Netzhaut einen lokalen Schaden
der Bruch-Membran mit nachfolgen-

der entzündungsgetriebener Neovasku-
larisation der Aderhaut [40, 43, 44].
Innerhalb weniger Minuten migrieren
residente Mikrogliazellen zur Laserläsi-
on und erhöhte VEGF-Spiegel fördern
diesen Prozess. Es ist unwahrscheinlich,
dass Mikrogliazellen selbst einen si-
gnifikanten Beitrag zur Gesamt-VEGF-
Produktion leisten, aber ihr Tropismus
zu neu gebildeten Gefäßen könnte die
Entstehung der choroidalen Neovasku-
larisierung (CNV) frühzeitig fördern.
Bei rekrutierten CCR2+ Monozyten/
Makrophagen hingegen ist der Beitrag
zur frühen VEGF-Produktion im La-
sermodell der CNV gut dokumentiert
[39].

Mikroglia und Komplement-
faktoren

Seit Veröffentlichung der ersten genom-
weiten Assoziationsstudien der AMD
hat das Komplementsystem beträcht-
liche Aufmerksamkeit im Bereich der
Netzhautforschung erlangt [19]. Eine
lokale Fehlregulation der alternativen
Komplementfaktorkaskade in der Netz-
haut gilt seither als gesicherter patho-
physiologisch relevanter Mechanismus
[60]. Mikroglia sind die einzigen re-
sidenten Zellen der Netzhaut, die den
Komplementfaktor 3 Rezeptor exprimie-
ren, und damit eine erhöhte Phagozytose
von opsonisierten Partikeln anschalten.
Mikroglia selbst sind auch in der La-
ge mehrere Faktoren der klassischen
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Abb. 38 Iba1-Immunfärbung (grün) vonMikrogliazellen in Flachpräparaten einer awildtypischen
(WT) bzw.b Fam161a-defizientenMausnetzhaut.a In der gesundenNetzhaut bilden stark verzweigte
Mikrogliazellen ein Netzwerk.b Bei retinaler Degeneration ziehenMikrogliazellen ihre Fortsätze ein
und transformieren zu amöboiden Phagozytenmit hohermigratorischer Aktivität

und alternativen Komplementkaskade
zu produzieren. Besonders A2E, ein Bis-
retinoid des bei der AMD abgelagerten
Lipofuszins, regt Mikroglia zur Produk-
tion von C3-Aktivierungsprodukten an,
die sich wiederum auf der Oberfläche
von RPE-Zellen anlagern können [45].

Mikroglia als Zielzelle
zur therapeutischen
Immunmodulation in der
Netzhaut

ReaktiveMikrogliazellenund Immunak-
tivierung sind übergreifende Pathome-
chanismen eines breiten Spektrums von
Netzhauterkrankungen. Im Gegensatz
zu individualisierten und sehr entwick-
lungsintensivenGentherapieansätzenbei
seltenen Netzhauterkrankungen kann
durch die Modulation der Mikrogliare-
aktivität der Verlauf einer Vielzahl von
Netzhauterkrankungen positiv beein-
flusst werden. Hierbei ist es sinnvoll, die
Immunaktivierung schon möglichst in
Frühphasen der Erkrankung zu beein-
flussen.

Minozyklin

Minozyklin ist ein halbsynthetisches Te-
trazyklinderivat, das als Antibiotikum
und entzündungshemmendes Medika-
ment zur Behandlung von Akne und
Arthritis eingesetzt wird. In den letzten
Jahren wurde berichtet, dass Minozyklin
auch bei experimentellen Modellen von
verschiedenen neurodegenerativen Er-
krankungen, einschließlich Parkinson,

Alzheimer, amyotropher Lateralsklero-
se, Multiple Sklerose und Rückenmark-
verletzungen neuroprotektive Effekte
ausüben kann [20]. Als Wirkmechanis-
mus werden dabei antioxidative Effekte
und die Stabilisierung von Mitochon-
drien diskutiert, um den Zelltod zu
verhindern [55]. Am stärksten scheint
jedoch die immundämpfende Wirkung
auf Mikroglia, d. h. auf ihre Aktivierung,
ProliferationundMigration sowie auf die
Freisetzung von proinflammatorischen
Zytokinen zum Tragen zu kommen [7].
Minozyklin zeigt durchweg gute Pe-
netrationseigenschaften durch die Blut-
Hirn- und die Blut-Retina-Schranke und
hat ein positives Sicherheitsprofil [15].

DieWirkung der Minozyklinbehand-
lung auf die Mikrogliaaktivierung und
den Verlauf der Netzhautdegeneration
wurde in verschiedenen Tiermodel-
len untersucht. Zhang et al. konnten
im Lichtschadensmodell zeigen, dass
die systemische Minozyklinbehandlung
die Netzhautfunktion über eine Woche
nach Lichtschaden signifikant erhal-
ten hat [67]. Einhergehend mit dieser
Beobachtung wurde auch die Anzahl
an aktivierten Mikrogliazellen in der
äußeren Netzhaut stark verringert [67].
PräklinischeStudienausunsererArbeits-
gruppe zur Wirkung von Minozyklin in
der Netzhaut haben potente neuropro-
tektive Effekte gezeigt, die mit einer fast
vollständigen Abwesenheit von TSPO-
positiven, aktivierten Mikrogliazellen
nach Lichtschaden einhergingen [62].
Darüber hinaus gibt es profunde Hin-
weise darauf, dass Minozyklin bei der

Modulation der Mikrogliareaktivität bei
Mausmodellen erblicher Netzhautde-
generationen wirksam ist. In diesem
Zusammenhang wurde gezeigt, dass die
Minozyklin vermittelte Unterdrückung
der Mikrogliaaktivierung direkt neu-
roprotektiv wirkt und zur Erhaltung
der Netzhautstruktur und -funktion
in Mertk-knockout und rd10-Mäusen
beiträgt [38, 54].

Basierend auf vielversprechenden
präklinischen Daten für Minozyklin
wurden am National Institutes of Health
(NIH) klinische Studien für das diabeti-
sche Makulaödem (NTC01120899) und
den retinalen Venenverschluss initiiert
(NTC01468844). Bei Patienten mit dia-
betischer Retinopathie wurde über die
Dauer von sechs Monaten zweimal täg-
lich 100mgMinozyklin oral verabreicht.
Im Studienverlauf verbesserten sich die
visuelle Funktion und das zentrale Ma-
kulaödemund die vaskuläre Leckagewar
bei allen Studienteilnehmern zurückge-
bildet [12]. Es konnte ausgeschlossen
werden, dass diese Effekte mit Verände-
rungen von diabetischen Labormarkern
wiedemglykämischenIndexoderderSe-
rumkreatinin assoziiert waren, vielmehr
wurden sie durch die Verminderung
von lokalen entzündlichen Effekten ver-
mittelt. Weitere Erkenntnisse in diesem
Bereich bedürfen jedoch umfassender
Phase-II-Studien mit einem Placebo-
Arm und dem Vergleich mit etablierten
Anti-VEGF-Therapien.

Minozyklinwurde auch in einer expe-
rimentellen Behandlung eines Patienten
mit Retinitis pigmentosa angewendet. In
diesem 140-monatigen Heilungsversuch
wurden täglich 100mg Minozyklin zu-
sammen mit der neuroprotektiven Sub-
stanz Deprenyl verabreicht [5]. Die pro-
grediente Einschränkung des Gesichts-
feldesverlief inAnwesenheitderBehand-
lungerheblich langsamerals inder frühe-
renKrankheitsphase vorderMedikation.
Auch hier müssen Studien an größeren
Kohorten mit Minozyklin alleine durch-
geführt werden, um das Behandlungs-
schema zu optimieren und die Wirkung
derBehandlungaufdasFortschreitender
Retinitis pigmentosa systematisch zu er-
fassen.
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Docosahexaensäure (DHA)

Die mehrfach ungesättigte Fettsäure
DHA ist in Phospholipiden der Plas-
mamembran von Photorezeptoren stark
angereichert und ist gleichzeitig ein Vor-
läufer von Neuroprotektin D1, einem
Faktor, der das Überleben von Photo-
rezeptoren und RPE-Zellen fördert [6].
DarüberhinauswirktDHAstarkimmun-
modulierend und trägt zur Hemmung
der entzündlichen Aktivierung von Mi-
kroglia bei [3, 18].DadieDHA-Spiegel in
verschiedenen menschlichen erblichen
Formen sowie Tiermodellen der Netz-
hautdegeneration vermindert sind, wer-
den diese Fettsäuren als therapeutische
Nahrungsergänzungsmittel angesehen.
Es gab zunächst widersprüchliche Er-
gebnisse der Wirkung von DHA bei der
Verzögerung der Netzhautdegeneration.
So konnte die Fischölsupplementie-
rung bei Hunden mit einer progressiven
Stäbchen-Zapfen-Dystrophie oder bei
transgenen Ratten mit einem Retinitis-
pigmentosa-Phänotyp das Fortschrei-
ten der Degeneration nicht beeinflussen
[1, 47]. Im Gegensatz dazu verzöger-
te die Nahrungsergänzung mit DHA
bei Mausmodellen der X-gebundenen
Retinoschisis die Netzhautdegenerati-
on signifikant [18] und hemmte die
Mikrogliaaktivierung in Modellen der
neuronalen Ceroid-Lipofuszinose [48]
und im transgenen ELOVL4 Stargardt-
Mausmodell [16].

Eine vierjährige placebokontrollierte
Studie mit 51 Patienten mit X-chromo-
somaler Retinitis pigmentosa ergab, dass
eine hochdosierte DHA-Supplementie-
rung ein sehr gutes Sicherheitsprofil
zeigte und die Sensitivität des Gesichts-
felds signifikant erhalten konnte [28].
Der Erhalt des Gesichtsfelds war dabei
direktmit derNormalisierung des DHA-
Spiegels im Blut korreliert. Ähnlich dazu
korrelieren hohe Plasma-DHA-Konzen-
trationen nach Nahrungsergänzung mit
dem Erhalt der Netzhautfunktion und
Sehschärfe bei Kindern mit langkettiger
3-Hydroxyacyl-CoA-Dehydrogenasede-
fizienz [22]. Das Timing und die Dosis
der DHA-Supplementierung sind sehr
wahrscheinlich entscheidend, um die
Wirksamkeit einer DHA-Supplementa-
tion zu optimieren. Dementsprechend

haben die meisten Studien, die posi-
tive Effekte durch DHA bei der Netz-
hautdegeneration zeigen konnten, die
Behandlung relativ frühzeitig begonnen.

Präklinische immun-
modulatorische Ansätze

Die präklinische Forschung der letzten
Jahre folgte dem übergeordneten Kon-
zept derAuswahl solcher Substanzen, die
sowohl auf die zelluläre Immunaktivie-
rung als auch auf die Mikroumgebung
derNetzhaut neuroprotektiv wirken (sie-
he Minozyklin und DHA). Als Parade-
beispiel sind hier natürliche Komponen-
tender extrazellulärenMatrix zunennen.
Endogene Zuckerstrukturen wie ein von
Chondroitinsulfat-Proteoglykanenabge-
leitetesDisaccharid (CSPG-DS)schützen
lokal vor dem Verlust an Netzhautneu-
ronen in experimentellen Mausmodel-
len des Glaukoms und der autoimmunen
Uveitis [4, 58].Dabei induziertCSPG-DS
einen regulatorischen Mikrogliaphäno-
typ mit erhöhter phagozytischer Kapazi-
tät, aber ohne die gleichzeitige Produk-
tion von neurotoxischen Sauerstoffradi-
kalen [17]. Andere von der extrazellulä-
renMatrix abgeleiteteMolekülemit einer
spezifischen und wirksamen Mikroglia
inhibierenden Wirkung sind Sialinsäu-
rereste an Glykoproteinen. Jüngste Ar-
beiten aus unserer Arbeitsgruppe konn-
tenzeigen, dassdie intravitreale Injektion
von niedermolekularen Polysialinsäuren
die Mikrogliareaktivität nach laserindu-
ziertemNetzhautschadenvermindert so-
wie die Komplementaktivierung in vitro
und in vivo potent unterdrückt [35]. Die
synergistische Wirkung der Polysialin-
säuren auf Mikroglia-Siglec-Rezeptoren
einerseits und auf das alternative Kom-
plementsystem andererseits greift damit
erstmals sowohl beim zellulären als auch
beim löslichen angeborenen Immunsys-
tem ein.

Als weitere therapeutische Zielstruk-
tur ist das mitochondriale Translokator-
protein (18 kDa) (TSPO) zu nennen, das
in aktivierten murinen und humanen
Netzhaut-Mikrogliazellen überexpri-
miert wird [32]. In weiterführenden
Studien konnte gezeigt werden, dass
der selektive TSPO-Ligand XBD173
die Anzahl amöboider Mikroglia in

degenerierenden retinalen Explantaten
effektiv reduziert und darüber hinaus
neuroprotektiv in verschiedenen Licht-
schadensmodellen der Maus wirkt [61].
Da TSPO-Liganden auch als Therapie-
option für neurologische Erkrankungen
gelten, erscheint eine gemeinsame Wei-
terentwicklung auch für degenerative
Netzhauterkrankungen sinnvoll.

Der sekundäre Pflanzenstoff Curcu-
min ist eine weitere vielversprechende
Verbindung, die auf mikrogliale Ziel-
strukturen wirkt und gleichzeitig das
neuronale Überleben positiv beeinflusst.
Curcumin blockiert die Produktion von
Sauerstoffradikalen, reduziert die Se-
kretion von entzündungshemmenden
Zytokinen und hemmt die Migration
von Mikroglia in vitro [31]. Es gibt
bereits Hinweise, dass Curcumin pro-
tektive Effekte in Tiermodellen hat. Hier
wurde gezeigt, dass es gegen die Mi-
kroglia vermittelte Neurotoxizität bei
akutem Lichtschaden schützt, die retina-
le Degeneration bei neuronaler Ceroid-
Lipofuszinose verzögert, das Überleben
von Photorezeptoren bei transgenen
Ratten mit der P23H-Rhodopsin-Muta-
tion verbessert und die experimentelle
diabetische Retinopathie bei Ratten ver-
mindert [26, 46, 48, 64]. Vor allem auf
dem Gebiet der Formulierungsentwick-
lung besteht noch Entwicklungsbedarf,
um optimale Anwendungsformen für
Curcumin zu finden, um seine orale
Bioverfügbarkeit zu verbessern.

Ausblick

Es gibt überzeugende Daten dafür, dass
die Mikrogliareaktivität ein frühes und
übergreifendes Kennzeichen bei degene-
rativen Netzhauterkrankungen mit ver-
schiedenen zugrunde liegenden Krank-
heitsursachen ist. In vitro-Experimente
und Tiermodelle waren enorm hilfreich,
um die wichtigsten Wirkmechanismen
der Mikrogliareaktivität bei Netzhaut-
verletzungen zu charakterisieren. Neben
ihrer Rolle als frühe Biomarker des Ge-
websschadens sind Mikroglia aktive Be-
standteile des Netzhautimmunsystems,
die chronische Entzündungsreaktionen
auslösen können. Die Untersuchung der
zellulären Immunaktivierung inTiermo-
dellen für seltene und multifaktorielle
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Netzhautdegenerationenhat bereits neue
Erkenntnisse für immunmodulatorische,
mikrogliagerichteteTherapieansätzeher-
vorgebracht.

InZukunftwirdesvongrößterBedeu-
tung sein, sich auf Studien mit mensch-
lichem Netzhautgewebe zu fokussieren.
Spenderbiobanken mit Netzhautgewebe
und entsprechende DNA- und Blut-
proben können extrem hilfreich sein,
um Gemeinsamkeiten und Unterschie-
de in der retinalen Immunhomöostase
bei Tiermodellen und im Menschen
zu verstehen. Es wird auch eine große
Herausforderung sein, mikrogliagerich-
tete Therapieoptionen in translationalen
bzw. klinischen Studien zu testen, um die
vielversprechendstenAnsätze auszuwäh-
len. Da immunmodulierende Ansätze
in Verbindung mit einer neuroprotekti-
ven Behandlung am effektivsten zu sein
scheinen, ist es sehr wahrscheinlich, dass
ein kombinierter Ansatz erforderlich ist.
Ein grundlegendes Problem bei klini-
schen Studien zur Behandlung von Ent-
zündungserkrankungen der Netzhaut
und Immuntherapien ist der derzeitige
Mangel an geeigneten Biomarkern zur
Endpunktbestimmung. Es gibt gute Hin-
weise, dass sich die Dysregulation des
Immunsystems teilweise bei Patienten
in systemischen Parametern widerspie-
gelt. Letztlich wird es dennoch wichtig
sein, sich auf das okuläre Immunsystem
zu konzentrieren, um lokale entzünd-
liche Prozesse durch die Analyse von
Zytokinen und Immunzellenpopulatio-
nen beispielsweise im Kammerwasser
von Patienten zu bestimmen. Es besteht
auch eine gute Chance, dass die Im-
munzellreaktivität in der menschlichen
Netzhaut durch verbesserte in vivo Imag-
ing-Technologien nachgewiesen werden
kann.Mit dieser spannendenPerspektive
kann die Netzhautforschung neuartige
Konzepte für mikrogliazielgerichtete
Therapieansätze entwickeln – eine loh-
nende Aufgabe im Sinne der vielen
Patienten mit Netzhautdystrophien.
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