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Neuroprotektion geschädigter
Photorezeptoren

Einleitung

Die Degeneration von Sehzellen ist die
gemeinsame Endstrecke vieler Erkran-
kungen der Netzhaut, welche hierdurch
letztendlich zu Erblindung führen. Dies
gilt sowohl für erbliche Netzhautdystro-
phienalsauchfürmultifaktorielleKrank-
heiten, wie die altersabhängige Makula-
degeneration und andere Entitäten die-
ses Formenkreises. Obwohl es für die
meisten dieser Krankheiten noch keine
kurativen Therapieoptionen gibt, zeigen
experimentelle Ansätze vielversprechen-
de Resultate in präklinischen sowie zum
Teil auch in klinischen Studien. Dazu
gehören die Neuroprotektion, die Gen-
therapie, die Transplantation von Zellen,
Sehprothesen [8] und die Optogenetik
[35]. Die Neuroprotektion nimmt dabei
eine Sonderstellung ein, da sie sowohl als
Einzeltherapie wie auch in Kombinati-
on mit anderenTherapien einsetzbar ist.
Die Entwicklung und Anwendung von
effizienten, gut verträglichen und ein-
fach zu verabreichenden neuroprotekti-
venSubstanzenerscheintdeshalbvorteil-
haft, weil diese womöglich krankheits-
übergreifend wirken und somit das Seh-
vermögen bei vielen Patienten erhalten
oder dessen Verlust zumindest verzögert
werden könnte. Eine Vielzahl relevanter
Substanzen wurde in präklinischen Mo-
dellen identifiziert und untersucht. Ei-
nige wurden auch bereits in klinischen
Versuchen, allerdings mit unterschiedli-
chem Erfolg, getestet.

Präklinische Forschung

Neurotrophe Faktoren

Neurotrophe Faktoren können sowohl
dieEntwicklungundDifferenzierungder
neuronalen Zellen beeinflussen als auch
deren Überleben in Stresssituationen
fördern. Zu den wichtigsten neurotro-
phen Faktoren gehören die Mitglieder
der FGF-(„fibroblast growth factor“),
GDNF-(„glial cell line-derived neuro-
trophic factor“), IL-6-(interleukin-6),
EGF-(„epidermal growth factor“), IGF-
(„insulin like growth factor“), TGFb-
(„transforming growth factor beta“) und
Neurotrophin-Familien. Nicht alle Fak-
toren zeigen hierbei die gleiche Effizienz
bei der Protektion der Sehzellen.

Zu den am besten charakterisierten
Faktoren zählt CNTF („ciliary neurotro-
phic factor“), ein zur IL-6-Familie ge-
hörendes Zytokin. Die neuroprotektive
FunktionvonCNTFinderNetzhautwur-
de bereits 1992 in der RCS(Royal Col-
lege of Surgeon)-Ratte, einem etablierten
Modell fürdieNetzhautdegeneration,be-
schrieben [25] und später in weiteren
Tiermodellen bestätigt [40]. Interessan-
terweise scheint CNTF seine protektive
Wirkung indirekt überMüller-Gliazellen
zu entfalten. CNTF ist vor allem deshalb
interessant, weil der Faktor neben Stäb-
chen auch Zapfen schützen kann und
zudem die Regeneration der Zapfenau-
ßensegmente fördert [27]. Vor diesem
Hintergrund ist CNTF auch in Bezug
auf den klinischen Einsatz attraktiv.

Gut beschrieben wurde auch das
Schutzpotenzial von BDNF („brain-de-
rived neurotrophic factor“) und GDNF.

Experimentelle Ansätze lassen vermu-
ten, dass sowohl BDNF als auch GDNF
ihre schützende Wirkung für Sehzellen
wie CNTF über eine Aktivierung der
Müller-Zellen entfalten könnten [17,
33]. Diese Daten rücken die Müller-
Gliazellen in den Fokus und etablieren
sie als mögliche Zielzellen für die Ak-
tivierung eines Programms zum Schutz
der Sehzellen.

Neben CNTF war FGF2 oder bFGF
einer der ersten neurotrophen Faktoren,
für welchen eine protektive Wirkung für
Sehzellen gezeigt wurde. Sowohl die sub-
retinale als auch die intravitreale Injek-
tion von bFGF in RCS Ratten bewirkte
eine signifikante Verzögerung der dege-
nerativen Prozesse in der Netzhaut und
sicherte das Überleben der Sehzellen für
mehrereWochen [14]. In der Folge wur-
de die Schutzwirkung von bFGF auch
in anderen Tiermodellen nachgewiesen
[30]. Es konnte zudem gezeigt werden,
dass bFGF auch endogen als zelluläre
Antwort auf einen Sehzellschaden pro-
duziert wird und schützend wirkt [30].

„Pigment epithelium-derived factor“
(PEDF) nimmt eine gewisse Sonderstel-
lung unter den neuroprotektiven Fak-
toren ein, da PEDF sowohl Sehzellen
schützen [19] als auch durch eine an-
tiangiogene Wirkung der Blutgefäßbil-
dung durch VEGF („vascular endotheli-
al growth factor“) entgegenwirken kann
[38]. Neben dem retinalen Pigmentepi-
thel scheinenwiederum dieMüller-Glia-
zellen den schützenden Faktor PEDF zu
produzieren [12].
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Antioxidantien

Oxidativer Stress ist eine permanenteGe-
fahrenquelle für die Zellen der Netzhaut.
Durch die hohe Sauerstoffkonzentrati-
on im Gewebe und die lebenslange Be-
lastung durch Licht können freie Radi-
kale entstehen, die Proteine und Lipi-
de schädigen und dadurch die Funktion
als auch die Lebensfähigkeit der Sehzel-
lenbeeinträchtigenkönnen.Zudemführt
die Phagozytose der abgestoßenen Seh-
zellenaußensegmente durch das retina-
le Pigmentepithel mit der Zeit zur An-
sammlung von unverdaubarem oxidier-
tem Material, das zum Beispiel als Lipo-
fuszin die Zellen schädigen kann. Durch
diese ständige oxidative Belastung ha-
bendieZellen eigene Schutzmaßnahmen
entwickelt und produzieren Enzyme mit
antioxidativer Wirkung. Daneben ent-
halten die RPE-Zellen auch Stoffe wie
Melanin, Lutein und Zeaxanthin, welche
überschüssiges Licht absorbieren und so
vor der Bildung von Radikalen schützen
[37].

Es ist daher nicht verwunderlich,
dass exogen zugeführte antioxidative
Substanzen einen Schutz für Sehzellen
bieten können. Substanzen wie Resve-
ratrol [23], Ginkgo-biloba-Extrakt [32],
Berberin [34], α-Tocopherol, Ascor-
binsäure, α-Liponsäure [22], N-Acetyl
Cystein [26], Dimethylurea [32] und
andere zeigen dabei eine protektive Wir-
kung im Modell der lichtinduzierten
Sehzellapoptose und können zum Teil
auch die Degeneration der Netzhaut in
vererbten Modellen für Retinitis pig-
mentosa verzögern. Allerdings ist die
Wirkungsweise vieler dieser Substanzen
nicht eingehend untersucht worden und
dieDefinitionderBandbreite des vermit-
telten Schutzes steht ebenfalls meistens
noch aus.

Flavonoide bilden eine große Klas-
se von pflanzlichen Sekundärmetaboli-
ten, die unter anderemvorUV-Strahlung
schützen können. Viele von ihnen haben
zudem eine antioxidative und/oder ent-
zündungshemmende Wirkung. Zu den
Flavonoidenmit protektiverWirkungge-
hören Anthocyanide [31] und Flavanole
wie Epigallocatechingallat [9].

Die Applikation von Nanopartikeln
mit antioxidativer Wirkung könnte eine

Alternative zu den obigen Substanzen
darstellen. Die Oxide von Cerium und
Yttrium, Metallen der seltenen Erden,
wurden erfolgreich als Antioxidantien
bei Netzhautdegenerationen im Tiermo-
dell eingesetzt [5, 28]. Insbesondere die
Schutzwirkung von Ceriumoxid, besser
bekannt unter dem Namen Nanoceria
[5], wurde bereits in mehreren tierexpe-
rimentellen Ansätzen beschrieben.

Neurosteroide

Die Netzhaut synthetisiert neuroaktive
Steroide, welche in verschiedene physio-
logische Prozesse eingreifen und auch in
derEntwicklung einewichtigeRolle spie-
len. Um diese Funktionen wahrnehmen
zu können, binden die Steroide an spe-
zifische Rezeptoren. So sind sowohl die
„nuclear estrogen receptors“ (ERα und
ERβ) wie auch Rezeptoren für Progeste-
ron in der Netzhaut exprimiert [4, 20].
Neben ihren physiologischen Funktio-
nenwirkenSteroide zudemprotektiv. Be-
sonders sind hierbei die schützenden Ei-
genschaften von 17-Estradiol (E2) und
Progesteron hervorzuheben. Beide Ste-
roide wurden im Tiermodell bereits mit
Erfolgeingesetzt [20,43].Zusätzlichwur-
de gezeigt, dass das synthetische Proges-
teron-Analog Norgestrel eine gute pro-
tektive Wirkung sowohl in induzierten
als auch vererbten Modellen der Netz-
hautdegeneration zeigt [11]. Interessan-
terweise könnte diese Schutzwirkung en-
dogene neurotrophe Faktoren wie „leu-
kemia inhibitory factor“ (LIF) miteinbe-
ziehen [2], was darauf hindeutet, dass
neuroprotektive Substanzen in der Netz-
haut sowohl spezifische als auch gemein-
same Signalwege nutzen, um die neuro-
nalen Zellen zu schützen.

Rasagilin, Minocyclin und
Rapamycin

Rasagilin ist ein selektiver Monoamin-
oxidase (MAO) Hemmer, der vor allem
in der Behandlung von Parkinson-Pati-
enten zum Einsatz kommt. Nach oraler
Verabreichung konnte Rasagilin caspa-
seabhängige Zelltodmechanismen in der
Netzhaut unterdrücken und so dieDege-
neration der Sehzellen in der rds(„retinal
degenerationslow“)-Mausverlangsamen

[13]. Minocyclin ist ein Antibiotikum,
welches zu denTetrazyklinen gehört und
häufig zur Behandlung von Akne ein-
gesetzt wird. Die systemische Behand-
lung vonMäusenmitMinocyclin konnte
Sehzellen sowohl gegen Lichtschaden als
auch gegen vererbte Degeneration schüt-
zen [18, 45]. Rapamycin ist einmTOR In-
hibitor, der auch immunsuppressiv wirkt
und in der Medizin unter anderem nach
Organtransplantationen in einer Kom-
binationstherapie eingesetzt wird. In der
Netzhaut konnte Rapamycin Sehzellen
gegen Lichtschaden schützen. Der zu-
grunde liegende Mechanismus ist noch
unklar, könnte aber einedifferentielleRe-
gulation der Autophagie beinhalten [24].

Klinische Forschung

Die Anzahl der klinischen Versuche mit
neuroprotektiven Substanzen hat in den
letzten Jahren signifikant zugenommen.
Mögliche Applikationswege beinhalten
die topische Gabe in Form von loka-
len Augentropfen, die subkonjunktivale
Applikation, die intravitreale Gabe so-
wie die orale Einnahme von Substanzen.
Entsprechende Beispiele werden in den
folgenden Absätzen mit den jeweiligen
Substanzen thematisiert. Da aber die Re-
sultate vieler dieser Studien noch nicht
verfügbar sind, ist eine Beurteilung der
Effektivität der Therapien häufig noch
nicht möglich.

CNTF

Um erhöhte intraokulare Konzentra-
tionen von CNTF über einen länge-
ren Zeitraum zu ermöglichen, wurde
ein Implantat entwickelt, welches im-
mortalisierte und CNTF-produzierende
Zellen mit einer semipermeablen Poly-
mermembran umhüllt. Dieses Implantat
(NT-501, Neurotech, Lincoln, RI) wird
in den Glaskörper eingeführt und an
der Sklera verankert. Die Zellen werden
über den Glaskörper mit Nährstoffen
und Sauerstoff versorgt und überleben
daher über einen längeren Zeitraum.
Währenddessen produzieren sie kon-
tinuierlich humanes CNTF, ohne dass
bislang schwerwiegende Nebenwirkun-
gen festgestellt wurden [21].
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NT-501 wurde bereits bei Retinitis
pigmentosa im Früh- und Spätstadium
untersucht.Die erhöhtenCNTF-Mengen
führten zwar zu einer Zunahme der re-
tinalen Schichtdicke, ohne dass jedoch
ein Anstieg des Visus festgestellt werden
konnte. In der Hochdosisgruppe wurde
sogar ein Abfall der Netzhautsensitivität
festgestellt, welcher aber nach Explan-
tation des Implantates komplett reversi-
bel war [1]. Gleichfalls negative Resultate
wurden für NT-501 in einer Phase I/II-
Studie bei CNBG3 Achromatopsie Pati-
enten erhalten (NCT01648452) [44]. Die
Ergebnisse einer neu initiierten Phase II-
Studie (NCT01530659), welche den Ef-
fekt von NT-501 bei früher Retinitis pig-
mentosaundUsher-SyndromTyp2und3
untersucht, bleiben abzuwarten.

Positive Ergebnisse mit NT-501 wur-
den hingegen bei Patienten mit der
trockenen Form der altersabhängigen
Makuladegeneration oder geografischer
Atrophie erzielt. In einer Phase II-Studie
konnte gezeigt werden, dass eine hohe
Dosis von CNTF bei diesen Patienten
sowohl die Netzhautdicke verstärken
als auch die Sehschärfe über einen
Zeitraum von zwölf Monaten stabili-
sieren konnte [46]. Obwohl dies auf eine
mögliche Anwendung von NT-501 bei
der trockenen AMD hindeuten könnte,
wurden keine weiteren Daten hierzu
veröffentlicht. Die Firma scheint sich
mit ihrem Produkt neu auf makuläre Te-
langiektasie (MacTel) und Glaukom zu
fokussieren (http://www.neurotechusa.
com/4-29-16_neurotech_announces_
renewedfocusNT501CNTProgram.pdf).

PEDF

Um die Mengen von PEDF im humanen
Auge zu erhöhen, wurde ein Adenovirus,
welcher PEDF exprimiert (AdPEDF.11),
Patienten mit exudativer AMD intravi-
treal appliziert. Dieses Vorgehen zeigte
bereits im Tiermodell gute Ergebnisse
[19, 29] und hat auch bei den Patien-
ten zu einer antiangiogenen Wirkung
geführt. Eine Progredienz der Läsionen
war in derjenigen Patientengruppe mit
hochdosierter PEDF-Gabe über einen
Zeitraum von zwölf Monaten nicht mehr
festzustellen [3].Drei neue klinischeVer-
suche (NCT03022318; NCT03023059;

NCT02873351) verfolgen einen inter-
essanten alternativen Ansatz, um einen
PEDF-vermittelten Schutz der Sehzel-
len zu erzielen. Dabei soll Patienten
mit mittlerer bis fortgeschrittener AMD
L-DOPA in Tablettenform verabreicht
werden, um durch die Aktivierung von
GPR143 im RPE das Verhältnis von
VEGF zu PEDF zugunsten von PEDF
zu verändern.

Antioxidantien

Eine große Studie zu altersbedingten
Augenerkrankungen (AREDS) testete
die orale Einnahme einer hochdosierten
Mixtur aus Antioxidantien (Vitami-
ne A, C und E), Zink und Kupfer. Das
Ergebnis zeigte, dass dadurch das Risiko
innerhalb von fünf Jahren aus einer frü-
hen eine fortgeschrittene FormderAMD
zu entwickeln um 25% verringert wurde
[6]. Eine zusätzliche Gabe von Lutein,
Zeaxanthin und Omega-3-Fettsäuren
führte zu keiner weiteren Verbesserung
[7].

OT-551,einlipophilesHydroxylamin-
präparat, welches zu seinem aktiven
Metaboliten TEMPOL-H verstoffwech-
selt wird, kann direkt oder indirekt mit
freienRadikalen reagierenund zeigte an-
tioxidative Effekte und einen Schutz der
Photorezeptoren im Tiermodell [36]. In
einer Phase II-Studie wurde OT-551 to-
pisch dreimal täglich für insgesamt zwei
Jahre an einem Auge verabreicht. Es
zeigte sich, dass acht von zehn Studien-
teilnehmern im Studienauge weniger
Buchstaben auf der EDTRS-Scala ver-
loren als im Kontrollauge. Allerdings
konnte kein Einfluss auf die Progression
der geografischen Atrophie oder auf die
Kontrastsensitivität gezeigt werden, so-
dass sich ein neuroprotektiver Effekt von
OT-551 in humanen Augen insgesamt
nicht bestätigen ließ [42].

Rasagilin, Minocyclin und
Rapamycin

Der MAO-Hemmer Rasagilin und das
Antibiotikum Minocyclin werden mo-
mentan in einer prospektiven Studie
zum Schutz der Sehzellen bei Netz-
hautablösung getestet (NCT02068625,
NCT01297816). Die Ergebnisse beider
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Zusammenfassung
Der Schutz der Sehzellen durch
Neuroprotektion ist ein vielversprechender
Ansatz, der bei vielen degenerativen
Netzhauterkrankungen entweder als Mono-
oder Kombinationstherapie zum Einsatz
kommen könnte. Viele neuroprotektive
Substanzen wurden im Tiermodell
identifiziert und erfolgreich getestet.
Einige dieser Substanzen wurden auch
bereits in klinischenVersuchen am Patienten
untersucht, allerdingsmit unterschiedlichem
Erfolg. Diverse Versuchsansätze werden
derzeit überprüft.
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Neuroprotection of damaged
photoreceptors

Abstract
Neuroprotection of photoreceptor cells is
a promising approach that could be used
to treat degenerative retinal diseases,
either as mono- or combination therapy.
Many neuroprotective substances have
been identified and successfully tested in
animalmodels. Several of them have already
been investigated in clinical trials involving
patients as well, although with variable
success. Various experimental approaches
are currently being reviewed.

Keywords
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Studien sind aktuell noch ausstehend.
Minocyclin wurde aber bereits in Bezug
auf die Reduktion eines diabetischen
Makulaödems untersucht. Eine kleinere
Phase I/II-Studie zeigte einen Anstieg
des Visus um durchschnittlich 5,8 ±
5,4 Buchstaben bei einer gleichzeitigen
Reduktion der Netzhautdicke um 8,1%
[10]. Da die Studie nur fünf Patien-
ten und keine Placebogruppe umfasste,
müssen diese Ergebnisse noch bestätigt
werden. Die Wirksamkeit und Sicher-
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heit vonMinocyclin wird derzeit noch in
drei anderen klinischen Phase II-Studien
bei geografischer Atrophie, fortgeschrit-
tener Makuladegeneration sowie bei
retinalen Zentralvenen- und Venenast-
verschlüssen evaluiert (NCT02564978,
NCT01468844, NCT01468831). Wichtig
scheint hier vor allem der Sicherheits-
aspekt zu sein, da für Minocyclin eine
gewisse Netzhauttoxizität in Maus [16]
und Kaninchen [15] nachgewiesen wur-
de.

Da Autophagiemarker in humanen
Drusen und gestressten RPE-Zellen ge-
funden wurden [39], wurde der mTOR-
Inhibitor Rapamycin in einer Phase I/II-
Studie in Bezug auf die Progression
der geografischen Atrophie untersucht.
Eine subkonjuntivale Injektion von syn-
thetischem Rapamycin (Sirolimus) alle
drei Monate hatte keine feststellbaren
positiven Effekte. Weder Sehschärfe,
Netzhautdicke oder die Größe der Dru-
sen waren signifikant unterschiedlich zu
den Kontrollaugen [41].

Fazit für die Praxis

Obwohl neuroprotektive Ansätze in
Tiermodellen gute Ergebnisse erziel-
ten und somit verheißungsvoll für eine
klinische Anwendung erscheinen, ge-
staltet sich die klinische Umsetzung für
den Einsatz bei Patienten noch relativ
schwierig. Einerseits stellt die notwen-
dige langfristige und kontinuierliche
Applikation der pharmazeutischen Sub-
stanzen eine große Herausforderung
dar. Andererseits sind die humanen
Pathomechanismen bei Netzhautdege-
nerationen immer noch nicht genügend
untersucht, um sie in eine direkte Kor-
relation zu den Erkenntnissen aus den
tierexperimentellen Ansätzen setzen zu
können. Außerdem ist die Bestimmung
der klinischen Endpunkte bei langsam
verlaufenden Netzhautdegeneratio-
nen schwierig und kann eine jahrelange
Untersuchungsspanne beanspruchen.
Eine Identifikation von Parametern, die
schon früh einen protektiven Effekt er-
kennen lassen, wäre daher von großem
Interesse und könnte das Gebiet signifi-
kant voranbringen.
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