Home Technology Correlation Between the Microstructure of Galvannealed Coatings and the Defoliation during Press Forming
Article
Licensed
Unlicensed Requires Authentication

Correlation Between the Microstructure of Galvannealed Coatings and the Defoliation during Press Forming

  • Moon-Hi Hong
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

The defoliation properties of galvannealed coating, so-called powdering and flaking, in continuous galvanizing line were investigated by scanning electron microscopy, X-ray diffraction, roughness profiler and deep drawing test. Both aluminum content in molten zinc and galvannealing temperature were turned out to be critical factors on the microstructure and mechanical properties of galvannealed coatings. Below 0.135 wt% Al, coating surface composed of the mixture of granular d1p and columnar z phases. While, above 0.155 wt% Al, coating surface contained the mixture of granular d1p and pan-cake d1k phases. The appearance of brittle d1k phase approximately 10 μm in size can account for the high amount of defoliation during deep drawing test. The formation of relatively ductile z phase and thin G phase contributes to improve the press formability. The optimazation of the surface microstructure controlling the ratio of granular d1p and columnar z phases was important to reduce the powdering.

Kurzfassung

Das Abblätterverhalten von wärmebehandelten (GA) Zinkeschichtungen, das sogenannte Pulverisieren und Abschuppen, in Endlosverzinkungslinien wurde mittels Rasterelektronenmikroskopie, Röntgendiffraktion, Rauigkeitsmessungen und Tiefziehtests untersucht. Sowohl der Aluminiumgehalt in geschmolzenem Zink als auch die Wärmebehandlungstemperaur nach dem Verzinken (GA-Temperatur) erwiesen sich als kritische Faktoren für Gefüge und mechanische Eigenschaften der Zinkschichten. Unterhalb eines Gehalts von 0,135 Gew.-% Al setzte sich die Beschichtungsoberfläche aus einer Mischung von granularem d1p und stengeligen z-Phasen zusammen, während bei einem Gehalt von über 0,155 Gew.-% Al die Beschichtungsoberfläche aus einer Mischung von granularem d1p und flachen Scheiben aus d1k-Phasen bestand. Das Auftreten einer spröden d1k-Phase mit einer Größe von etwa 10 μm kann die große Menge des Abblätterns während des Tiefziehtests erklären. Die Bildung einer relativ duktilen z-Phase und einer dünnen G-Phase trägt zur Verbesserung der Druckverformbarkeit bei. Die Optimierung des Oberflächengefüges durch Steuerung des Verhältnisses von granularem d1p und stengeligen z-Phasen erwies sich als wichtig für die Reduzierung des Abblätterns.

Literatur/References

[1] Sakiyama, T.; Ichigawa, M.; Saito, Z.; Matsuzaki, Y.: CAMP-ISIJ, 3 (1990), 1508Search in Google Scholar

[2] Guth, J.; Mataigne, J. M.: Proc. of GALVATECH’ 1995, Iron and Steel Society (Ed.), 17–21 September, Chicago, USA, 709716Search in Google Scholar

[3] Hong, M. H.; Saka, H.: Scripta Materialia., 36 (1997), 142310.1016/S1359-6462(97)00030-4Search in Google Scholar

[4] Kato, T.; Hong, M. H.; Nunome, K.; Sasaki, K.; Kuroda, K.; Saka, H.: Thin Solid Film, 319 (1998), 13210.1016/S0040-6090(97)01108-5Search in Google Scholar

[5] Saka, H.; Kato, T.; Hong, M. H.: J. of Surface Finishing Soc. of Japan, 51 (2000), 56810.4139/sfj.51.568Search in Google Scholar

[6] Hong, M. H.; Saka, H.: Phil. Mag., A74 (1996), 50910.1080/01418619608242158Search in Google Scholar

[7] Hong, M. H.; Saka, H.: Acta Materialia, 45 (1997), 422510.1016/S1359-6454(97)00079-7Search in Google Scholar

[8] Okamoto, A.: Recent Progress and Future Prospects in Steel Sheets and Surface Treated Steel Sheets, 31, ISIJ (Ed.), Tokyo, Japan, 1998Search in Google Scholar

[9] Marder, A. R.: Prog. in Mat. Sci., 45 (2000), 19127110.1016/S0079-6425(98)00006-1Search in Google Scholar

[10] Dauby, B.; Vankeleffe, P.; Feron, S.: Proc. of GALVATECH’ 1995, Iron and Steel Society (Ed.), 17–21 September, Chicago, USA, 717722Search in Google Scholar

[11] Mcdevitt, E.; Morimoto, Y.; Meshii, M.: ISIJ international, 37, (1997) 77610.2355/isijinternational.37.776Search in Google Scholar

[12] Morimoto, Y.; Mcdevitt, E.; Meshii, M.: ISIJ international, 37 (1997), 90610.2355/isijinternational.37.906Search in Google Scholar

[13] G. J.Harvey and P. D.Mercer: Metall. Trans., 4, (1973) 61910.1007/BF02648719Search in Google Scholar

[14] Lin, C. S.; Meshii, M.: Met. & Mat. Trans. B, 25B (1994), 72110.1007/BF02655180Search in Google Scholar

[15] Dubois, D.; Proc. of GALVATECH’ 2001, M.Lamberights (ed.), 26–28 June, Brussels, Belgium, 453Search in Google Scholar

[16] Yamaguchi, S.; Makino, H.; Sakatoku, A.; Iguchi, Y.: Proc. of GALVATECH’ 1995, Iron and Steel Society (Ed.), 17–21 September, Chicago, USA, 647655Search in Google Scholar

[17] Van der Heiden, A., Burghardt, A. J.C., Van Koesveld, W., Perlstein, E. B., Spangers, M. G. J.: The Physical Metallurgy of Zinc Coated Steel, TMS annual meeting, San Francisco, 1994, 251Search in Google Scholar

[18] Arai, M., Nakamori, T., Adachi, Y., Utsugi, T., CAMP-ISIJ, 5 (1992), 1649Search in Google Scholar

[19] Gomi, S.; Kato, C.; Fujimura, T.; Mochizuki, K.: Zinc-Based Steel Coating Systems–Production and Performance, Goodwin, F. E. (Ed.), 16–19 February, 1998, San Antonio, USA, 147156Search in Google Scholar

Received: 2002-2-19
Accepted: 2003-7-2
Published Online: 2013-06-11
Published in Print: 2005-05-01

© 2005, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.100261/html
Scroll to top button