Home Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method
Article
Licensed
Unlicensed Requires Authentication

Structural, morphological and dielectric properties of Ni-doped ZnO nanoceramics prepared by Sol-gel method

  • Sunena Subhash EMAIL logo and Sudheendran Kooriyattil
Published/Copyright: December 10, 2024

Abstract

The objective of this work is to synthesize new set of nanoceramics that improves structural integrity and dielectric performance while maintaining the desired characteristics of ZnO with the introduction of regulated Ni-doping. By using the sol-gel process, Ni-doped ZnO nanoceramics were successfully synthesized. Zn1–xNixO (x = 0, 0.05, 0.01, 0.15) wt % of Ni in to Zn precursor salts were added. Doping levels are considered to be low to moderate level, which typically lead to considerable changes in structural, optical, morphological and dielectric properties without modification of the nature of host ZnO. Higher concentrations greater than 15 % can result in the precipitation of isolated Ni or NiO phases which may negatively influence uniformity and consistency of the doped material. By using XRD for structural study, phase purity and the hexagonal wurtzite structure were confirmed. The integration of Ni2+ ions into the ZnO lattice is indicated by the change in lattice parameters and bond length for the Ni-doped ZnO sample. Samples follow almost same c/a ratio of an average of 1.601. An increase in “Ni” content results a decrease in crystallite size. Average crystallite size has been calculated ranging from 43.88 nm to 17.01 nm for ZnO to Zn0.85Ni0.15O samples. According to SEM analysis, the grains of the samples are uniformly dispersed. When the produced NPs were examined for purity using EDAX analysis, it was found that the beginning stoichiometries and the chemical composition of Zn, Ni, and O agreed well. The development of the ZnO phase was verified by the presence of a peak at 523 cm−1 in the FTIR spectra. According to the findings of X-ray photoelectron spectroscopy (XPS), Ni was observed to be present in the ZnO lattice in the form of Ni2+.The Koops phenomenological theory and the Maxwell-Wagner model provide an explanation for the observed dielectric behaviour. It is noted that for pure ZnO, the dielectric constant and dielectric loss have maximum values, whereas for doped samples, these values decreases. Our sample is suitable for high frequency device application due to a negligible dielectric loss of 0.047 at 15 % Ni concentration in the high-frequency region. Ni-doping affects AC conductivity. At 10 MHz, Zn0.9Ni0.1O has the highest AC conductivity (2.654 × 10⁻⁴ (Ω cm)⁻1), while Zn0.85Ni0.15O shows a lower value (1.048 × 10⁻⁴ (Ω cm)⁻1), indicating a balance between doping level and grain boundary influence on conduction. The impedance study reveals that just one semicircle in all samples, indicating that the influence of grain boundaries is more significant than the contribution of individual grains.


Corresponding author: Sunena Subhash, PG & Research Department of Physics, Sree Kerala Varma College, University of Calicut, Thrissur, Kerala State, 680011, India, E-mail:

Acknowledgments

I would like to thank KSCSTE (Kerala State Council for Science Technology and Environment) for providing fellowship to facilitate my work. Facilities provided by DST – FIST, UGC, SERB, KSCSTE SARD are deeply acknowledged.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: KSCSTE (Kerala State Council for Science Technology and Environment).

  7. Data availability: Not applicable.

References

1. Klingshirn, C.; Fallert, J.; Zhou, H.; Sartor, J.; Thiele, C.; Flaig, F. M.; Schneider, D.; Kalt, H. Phys. Status Solidi B 2010, 247, 1424; https://doi.org/10.1002/pssb.201090010.Search in Google Scholar

2. McCluskey, M. D.; Jokela, S. J. J. Appl. Phys. 2009, 106, 071101; https://doi.org/10.1063/1.3216464.Search in Google Scholar

3. Wu, D.; Xu, Q. Y.; Zhang, F. M.; Liu, X. S.; Du, Y. W. AAPPS Bull. 2008, 18, 52.Search in Google Scholar

4. Dietl, T. J. Phys. Condens. Matter 2007, 19, 165204; https://doi.org/10.1088/0953-8984/19/16/165204.Search in Google Scholar

5. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Prog. Mater. Sci. 2005, 50, 293; https://doi.org/10.1016/j.pmatsci.2004.04.001.Search in Google Scholar

6. Grigorjeva, L.; Millers, D.; Smits, K.; Monty, C.; Kouam, J.; El Mir, L. Solid State Phenom 2007, 128, 135–140; https://doi.org/10.4028/www.scientific.net/ssp.128.135.Search in Google Scholar

7. Yan, L.; Ong, C. K.; Rao, X. S. J. Appl. Phys. 2004, 96, 508–511; https://doi.org/10.1063/1.1757652.Search in Google Scholar

8. Kim, D. H.; Woo, S. I.; Moon, S. H.; Kim, H. D.; Kim, B. Y.; Cho, J. H.; Joh, Y. G.; Kim, E. C. Solid State Commun. 2005, 136, 554–558; https://doi.org/10.1016/j.ssc.2005.09.012.Search in Google Scholar

9. Choopun, S.; Vispute, R. D.; Noch, W.; Balasamo, A.; Sharma, R. P.; Venkatesan, T.; Lliadies, A.; Look, D. C. Appl. Phys. Lett. 1999, 75, 3947–3949; https://doi.org/10.1063/1.125503.Search in Google Scholar

10. Ueda, K.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2001, 79, 988–990; https://doi.org/10.1063/1.1384478.Search in Google Scholar

11. Nunes, P.; Fortunadeo, E.; Martins, R. Thin Solid Films 2001, 383, 277–280.10.1016/S0040-6090(00)01577-7Search in Google Scholar

12. Lin, Y. H.; Ying, M. H.; Li, M.; Wang, X. H.; Nan, C. W. Appl. Phys. Lett. 2007, 90, 222110–222112; https://doi.org/10.1063/1.2745247.Search in Google Scholar

13. Yang, Y. C.; Zhong, C. F.; Wang, X. H.; He, B.; Wei, S. Q.; Zeng, F.; Pan, F. J. Appl. Phys. 2008, 104, 064102–064105; https://doi.org/10.1063/1.2978221.Search in Google Scholar

14. Chen, K. X.; Wang, H. J. Colloid Interface Sci. 2009, 330, 380.Search in Google Scholar

15. Lia, B. B.; Xiua, X. Q.; Zhanga, R.; Taoa, Z. K.; Chena, L.; Xie, Z. L.; Zheng, Y. D. Mater. Sci. Semicond. Proc. 2006, 9, 141.Search in Google Scholar

16. Wu, D.; Yang, M.; Huang, Z.; Yin, G.; Liao, X.; Kang, Y.; Chen, X.; Wang, H. Yunqing. J. Colloid Interface Sci. 2009, 330, 380; https://doi.org/10.1016/j.jcis.2008.10.067.Search in Google Scholar PubMed

17. Cheng, C. W.; Xu, G. Y.; Zhang, H. Q.; Luo, Y. Mater. Lett. 2008, 62, 1617; https://doi.org/10.1016/j.matlet.2007.09.035.Search in Google Scholar

18. Ghosh, S.; Srivastava, P.; Pandey, B.; Saurav, M.; Bharadwaj, P.; Avasthi, D. K.; Kabiraj, D.; Shivaprasad, S. M. Appl. Phys. A 2008, 90, 765; https://doi.org/10.1007/s00339-007-4353-6.Search in Google Scholar

19. Cong, C. J.; Hong, J. H.; Liu, Q. Y.; Liao, L.; Zhang, K. L. Solid State Commun. 2006, 138, 511; https://doi.org/10.1016/j.ssc.2006.04.020.Search in Google Scholar

20. Wu, D. W.; Yang, M.; Huang, Z. B.; Yin, G. F.; Liao, X. M.; Kang, Y. Q.; Chen, X. F.; Wang, H. J. Colloid Interface Sci. 2009, 330, 380; https://doi.org/10.1016/j.jcis.2008.10.067.Search in Google Scholar

21. El-Nahass, M. M.; Farag, A. A. M.; Atta, A. A. Synth. Met. 2009, 159, 589; https://doi.org/10.1016/j.synthmet.2008.11.029.Search in Google Scholar

22. Banerjee, P. P. Proc. IEEE 2005, 73, 1859; https://doi.org/10.1109/proc.1985.13378.Search in Google Scholar

23. Moghaddam, A. B.; Nazari, T.; Badraghi, J.; Kazemzad, M. Int. J. Electrochem. Sci. 2009, 4, 247; https://doi.org/10.1016/s1452-3981(23)15125-x.Search in Google Scholar

24. Baron, R.; Campbell, F. W.; Streeter, I.; Xiao, L.; Compton, R. G. Int. J. Electrochem. Sci. 2008, 3, 556; https://doi.org/10.1016/s1452-3981(23)15543-x.Search in Google Scholar

25. Khorsand Zak, A.; Mjid, W. H. A.; Abrishami, M. E.; Yousef, R. Solid State Sci. 2011, 13, 251–256.10.1016/j.solidstatesciences.2010.11.024Search in Google Scholar

26. Saleem, M.; Fang, L.; Ruan, H. B.; Wu, F.; Huang, Q. L.; Xu, C. L.; Kong, C. Y. Intl. J. Phy. Sci. 2012, 7, 2971–2979.Search in Google Scholar

27. Shukla, P.; Shukla, J. K. J. Supercond. Nov. Magn. 2019, 32, 721; https://doi.org/10.1007/s10948-018-4706-8.Search in Google Scholar

28. Anbuselvan, D.; Muthukumaran, S. Opt. Mater. (Amst) 2015, 42, 124; https://doi.org/10.1016/j.optmat.2014.12.030.Search in Google Scholar

29. Kannan, P. K.; Saraswathi, R.; Rayappan, J. B. B. Ceram. Int. 2014, 40, 13115; https://doi.org/10.1016/j.ceramint.2014.05.011.Search in Google Scholar

30. He, Y.; Yang, B.; Cheng, G. Catal. Today 2004, 98, 595–600; https://doi.org/10.1016/j.cattod.2004.09.014.Search in Google Scholar

31. Pandey, B.; Ghosh, S.; Srivastava, P.; Kabiraj, D.; Shripati, T.; Lalla, N. P. Physica E 2009, 41, 1164; https://doi.org/10.1016/j.physe.2009.01.016.Search in Google Scholar

32. Ghosh, S.; Srivastava, P.; Saurav, P. M.; Bharadwaj, P.; Avasthi, D. K.; Kabiraj, D.; Shivaprasad, S. M. Appl. Phys. A 2008, 90, 765.10.1007/s00339-007-4353-6Search in Google Scholar

33. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. Surf. Sci. 2006, 600, 1771; https://doi.org/10.1016/j.susc.2006.01.041.Search in Google Scholar

34. Kim, K. T.; Kim, G. H.; Woo, J. C.; Kim, C. I. Surf. Coat. Techn. 2008, 202, 5650; https://doi.org/10.1016/j.surfcoat.2008.06.078.Search in Google Scholar

35. Kumar, E. S.; Venkatesh, S.; Rao1, M. S. R. Appl. Phys. Lett. 2010, 96, 232504.Search in Google Scholar

36. Jeong, Y.; Bae, C.; Kim, D.; Song, K.; Woo, K.; Shin, H.; Cao, G.; Moon, J. ACS Appl. Mater. Interfaces 2010, 2, 611; https://doi.org/10.1021/am900787k.Search in Google Scholar PubMed

37. Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. Appl. Surf. Sci. 2000, 158, 134; https://doi.org/10.1016/s0169-4332(99)00601-7.Search in Google Scholar

38. Yin, Z. G.; Chen, N.; Yang, F.; Song, S. L.; Chai, C. L.; Zhong, J.; Qian, H. J.; Ibrahim, K. Solid State Commun. 2005, 135, 430–433; https://doi.org/10.1016/j.ssc.2005.05.024.Search in Google Scholar

39. Mishra, D. K.; Kumar, P.; Kumar, S.; Mohapatra, S.; Sulania, I.; Tripathi, A.; Varma, S.; Sharma, M. K.; Chatterjee, R.; Kanjilal, D. Adv. Sci. Lett. 2009, 2, 324; https://doi.org/10.1166/asl.2009.1067.Search in Google Scholar

40. Maxwell, J. Oxford Univ. Press 1873, 1, 328.Search in Google Scholar

41. Wanger, K. W. Ann. Phys. (Leipzig) 1913, 40, 817.Search in Google Scholar

42. Sivaprakash, P.; Divya, S.; Esakki Muthu, S.; Ali, A.; Jaglicic, Z.; Hwan Oh, T.; Kim, I. Mater. Sci. Eng. B 2024, 301, 117200; https://doi.org/10.1016/j.mseb.2024.117200.Search in Google Scholar

43. Koops, C. G. Phys. Rev. 1951, 83, 121–124; https://doi.org/10.1103/physrev.83.121.Search in Google Scholar

44. El Hiti, M. A. J. Magn. Magn. Mater. 1999, 192, 305–313; https://doi.org/10.1016/s0304-8853(98)00356-4.Search in Google Scholar

45. Sivapraksh, P.; Divya, S.; Parameshwari, R.; Saravanan, C. J. Mater. Sci.: Mater. Electron. 2020, 31, 16369–16378.10.1007/s10854-020-04187-9Search in Google Scholar

46. Divya, S.; Sivapraksh, P.; Raja, S.; Esakki Muthu, S.; Ikhyun Kim, J.; Renuka, N.; Arumugam, S.; Oh, T. H. Ceram. Int. 2022, 48, 33208–33218; https://doi.org/10.1016/j.ceramint.2022.07.263.Search in Google Scholar

47. Reddy, P.; Rao, T. J. Less-Common Met. 1982, 86, 255–261; https://doi.org/10.1016/0022-5088(82)90211-9.Search in Google Scholar

48. Dutta, S.; Choudhary, R. N. P.; Sinha, P. K. Phys. Status Solidi A 2005, 202, 1172; https://doi.org/10.1002/pssa.200406932.Search in Google Scholar

49. Maddalena, A.; Maschio, R. D.; Dire, S.; Raccanelli, A. Non-Cryst. Solids 1990, 121, 365.10.1016/0022-3093(90)90159-JSearch in Google Scholar

Received: 2024-06-13
Accepted: 2024-11-04
Published Online: 2024-12-10
Published in Print: 2025-08-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0905/html
Scroll to top button