Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
-
Arif Nazir
, Sundas Zahid
, Zaid Mahmood , Farah Kanwal , Shoomaila Latif , Muhammad Imran , Faiza Hassan and Munawar Iqbal
Abstract
This study focusses on the synthesis of polyaniline (PANI) and polyaniline base adsorbent utilizing Citrus limon leaves (CL) powder. The polyaniline base adsorbent with C. limon was synthesized using the same process as polyaniline synthesis, but with the addition of leaves powder. PANI and PANI based adsorbent with C. limon leaves powder (PANI/CL) were characterized by Fourier Transform Infra-Red (FTIR), UV-Visible spectroscopy and Scanning Electron Microscopy (SEM). This synthesized material was employed for the removal of congo red (CR) dye from industrial wastewater. Furthermore, the Langmuir, Temkin and Freundlich isotherms were also applied to evaluate experimental results. PANI is an efficient adsorbent for CR removal with 71.9 mg/g, while PANI/CL is an efficient adsorbent with 80 mg/g removal of dye according to a comparison of maximal adsorption capabilities. The data concludes that the prepared adsorbents could possibly be employed for the removal of toxic dyes from industrial effluents at large scale and ultimately could help in improving the environment.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Iqbal, D. N., Tariq, M., Khan, S. M., Gull, N., Sagar Iqbal, S., Aziz, A., Nazir, A., Iqbal, M. Int. J. Biol. Macromol. 2020, 143, 546–554; https://doi.org/10.1016/j.ijbiomac.2019.12.043.Search in Google Scholar PubMed
2. Iqbal, D. N., Shafiq, S., Khan, S. M., Ibrahim, S. M., Abubshait, S. A., Nazir, A., Abbas, M., Iqbal, M. Int. J. Biol. Macromol. 2020, 164, 499–509; https://doi.org/10.1016/j.ijbiomac.2020.07.139.Search in Google Scholar PubMed
3. Paulraj, P., Umar, A., Rajendran, K., Manikandan, A., Kumar, R., Manikandan, E., Pandian, K., Mahnashi, M. H., Alsaiari, M. A., Ibrahim, A. A. Electrochim. Acta 2020, 363, 137158; https://doi.org/10.1016/j.electacta.2020.137158.Search in Google Scholar
4. Slimani, Y., Almessiere, M. A., Korkmaz, A. D., Guner, S., Güngüneş, H., Sertkol, M., Manikandan, A., Yildiz, A., Akhtar, S., Shirsath, S. E. Ultrason. Sonochem. 2019, 59, 104757; https://doi.org/10.1016/j.ultsonch.2019.104757.Search in Google Scholar PubMed
5. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. in Physics 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Search in Google Scholar
6. Thilagavathi, P., Manikandan, A., Sujatha, S., Jaganathan, S. K., Arul Antony, S. Nanosci. Nanotechnol. Lett. 2016, 8, 438–443; https://doi.org/10.1166/nnl.2016.2150.Search in Google Scholar
7. Manimegalai, D. K., Manikandan, A., Moortheswaran, S., Antony, S. A. J. Supercond. Nov. Magnetism 2015, 28, 2755–2766; https://doi.org/10.1007/s10948-015-3089-3.Search in Google Scholar
8. Zarrintaj, P., Jouyandeh, M., Ganjali, M. R., Hadavand, B. S., Mozafari, M., Sheiko, S. S., Vatankhah-Varnoosfaderani, M., Gutiérrez, T. J., Saeb, M. R. Eur. Polym. J. 2019, 117, 402–423; https://doi.org/10.1016/j.eurpolymj.2019.05.024.Search in Google Scholar
9. Manikandan, A., Antony, S. A. J. Supercond. Nov. Magnetism 2014, 27, 2725–2733; https://doi.org/10.1007/s10948-014-2634-9.Search in Google Scholar
10. Vellayappan, M. V., Jaganathan, S. K., Manikandan, A. RSC Adv. 2016, 6, 114859–114878; https://doi.org/10.1039/c6ra24590k.Search in Google Scholar
11. Almessiere, M. A., Slimani, Y., Güngüneş, H., Korkmaz, A. D., Zubar, T., Trukhanov, S., Trukhanov, A., Manikandan, A., Alahmari, F., Baykal, A. ACS Omega 2021, 6, 10266–10280; https://doi.org/10.1021/acsomega.1c00611.Search in Google Scholar PubMed PubMed Central
12. Almessiere, M. A., Slimani, Y., Gungunes, H., Nawaz, M., Al-ahmari, F. S., Manikandan, A., Baykal, A. Phys. Scripta 2020, 95, 055802; https://doi.org/10.1088/1402-4896/ab7143.Search in Google Scholar
13. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Search in Google Scholar
14. Alagha, O., Ouerfelli, N., Kochkar, H., Almessiere, M. A., Slimani, Y., Manikandan, A., Baykal, A., Mostafa, A., Zubair, M., Barghouthi, M. H. Nanomaterials 2021, 11, 970; https://doi.org/10.3390/nano11040970.Search in Google Scholar PubMed PubMed Central
15. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Search in Google Scholar
16. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 1055–1075.10.1515/zpch-2019-1599Search in Google Scholar
17. Nazir, A., Zahra, F., Sabri, M. U., Ghaffar, A., Ather, A. Q., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2021, 235, 265–279; https://doi.org/10.1515/zpch-2019-1455.Search in Google Scholar
18. Nazir, A., Khalid, F., Rehman, S. U., Sarwar, M., Iqbal, M., Yaseen, M., Iftikhar Khan, M., Abbas, M. Z. Phys. Chem. 2021, 235, 769–784; https://doi.org/10.1515/zpch-2019-1558.Search in Google Scholar
19. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607.10.1515/zpch-2020-1803Search in Google Scholar
20. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1027–1039; https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar
21. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Search in Google Scholar
22. Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H., Nawaz, S., Nazir, A. Desalination Water Treat. 2021, 216, 423–435; https://doi.org/10.5004/dwt.2021.26893.Search in Google Scholar
23. Khan, N.-U.-H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Search in Google Scholar
24. Klimek-Szczykutowicz, M., Szopa, A., Ekiert, H. Plants 2020, 9, 119.10.3390/plants9010119Search in Google Scholar PubMed PubMed Central
25. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Search in Google Scholar PubMed
26. Gul, S., Shah, A.-u.-H. A., Bilal, S. J. Phys. Conf. 2013, 439, 012002; https://doi.org/10.1088/1742-6596/439/1/012002.Search in Google Scholar
27. Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 5881–5893; https://doi.org/10.1016/j.jmrt.2020.03.115.Search in Google Scholar
28. Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., Nazir, A. Int. J. Biol. Macromol. 2020, 150, 861–870; https://doi.org/10.1016/j.ijbiomac.2020.02.093.Search in Google Scholar PubMed
29. Khera, R. A., Iqbal, M., Jabeen, S., Abbas, M., Nazir, A., Nisar, J., Ghaffar, A., Shar, G. A., Tahir, M. A. Surfaces and Interfaces 2019, 14, 138–145; https://doi.org/10.1016/j.surfin.2018.12.004.Search in Google Scholar
30. Awwad, A. M., Amer, M. W., Al-aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Search in Google Scholar
31. Alkherraz, M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11–20.Search in Google Scholar
32. Jain, R., Sikarwar, S. Int. J. Environ. Pollut. 2006, 27, 158–178; https://doi.org/10.1504/ijep.2006.010460.Search in Google Scholar
33. Almasi, A., Dargahi, A., Ahagh, M., Janjani, H., Mohammadi, M., Tabandeh, L. J. Chem. Pharmaceut. Sci. 2016, 9, 2924–2928.Search in Google Scholar
34. Kurrey, R., Deb, M. K., Shrivas, K., Khalkho, B. R., Nirmalkar, J., Sinha, D., Jha, S. Anal. Bioanal. Chem. 2019, 411, 6943–6957; https://doi.org/10.1007/s00216-019-02067-8.Search in Google Scholar PubMed
35. Siddique, A., Hassan, A., Khan, S. R., Inayat, A., Nazir, A., Iqbal, M. Chem. Int. 2018, 4, 1–6.Search in Google Scholar
36. Nwamezie, O. U. I. F. Chem. Int. 2018, 4, 60–66.10.1093/itnow/bwy114Search in Google Scholar
37. Patel, R., Kumar, S., Verma, A., Srivastava, S. Chem. Int. 2017, 3, 158–164.Search in Google Scholar
38. Sharma, S. K., Sudarshan, K., Yadav, A. K., Jha, S. N., Bhattacharyya, D., Pujari, P. K. J. Phys. Chem. C 2019, 123, 22273–22280; https://doi.org/10.1021/acs.jpcc.9b05395.Search in Google Scholar
39. Chukwuemeka-Okorie, H. O., Ekuma, F. K., Akpomie, K. G., Nnaji, J. C., Okereafor, A. G. Appl. Water Sci. 2021, 11, 1–8.10.1007/s13201-020-01330-zSearch in Google Scholar
40. Kumari, S., Deori, M., Elancheran, R., Kotoky, J., Devi, R. Front. Pharmacol. 2016, 7, 400; https://doi.org/10.3389/fphar.2016.00400.Search in Google Scholar
41. Horsfall Jnr, M., Spiff, A. I. Electron. J. Biotechnol. 2005, 8, 43–50.10.2225/vol8-issue2-fulltext-4Search in Google Scholar
42. Kinniburgh, D. G. Environ. Sci. Technol. 1986, 20, 895–904; https://doi.org/10.1021/es00151a008.Search in Google Scholar
43. Ahn, D. J., Franses, E. I. J. Chem. Phys. 1991, 95, 8486–8493; https://doi.org/10.1063/1.461278.Search in Google Scholar
44. Skopp, J. J. Chem. Educ. 2009, 86, 1341; https://doi.org/10.1021/ed086p1341.Search in Google Scholar
45. LeVan, M. D., Vermeulen, T. J. Phys. Chem. 1981, 85, 3247–3250; https://doi.org/10.1021/j150622a009.Search in Google Scholar
46. Johnson, R. D., Arnold, F. H. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1995, 1247, 293–297; https://doi.org/10.1016/0167-4838(95)00006-g.Search in Google Scholar
47. Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V., Sivanesan, S. J. Hazard Mater. 2006, 128, 138–144; https://doi.org/10.1016/j.jhazmat.2005.07.049.Search in Google Scholar PubMed
48. Laasri, L., Elamrani, M. K., Cherkaoui, O. Environ. Sci. Pollut. Res. Int. 2007, 14, 237–240; https://doi.org/10.1065/espr2006.08.331.Search in Google Scholar PubMed
49. Alam, M., Ansari, A. A., Shaik, M. R., Alandis, N. M. Arab. J. Chem. 2013, 6, 341–345; https://doi.org/10.1016/j.arabjc.2012.04.021.Search in Google Scholar
50. Lafi, R., Montasser, I., Hafiane, A. Adsorpt. Sci. Technol. 2019, 37, 160–181; https://doi.org/10.1177/0263617418819227.Search in Google Scholar
51. Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., Tonui, M. K. Environ. Chem. Ecotoxicol. 2020, 2, 24–31; https://doi.org/10.1016/j.enceco.2020.01.004.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources
Articles in the same Issue
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources