Home Non-linear optical properties of polystyrene and polyvinyl alcohol composites with 4-methoxy-1-naphthol
Article
Licensed
Unlicensed Requires Authentication

Non-linear optical properties of polystyrene and polyvinyl alcohol composites with 4-methoxy-1-naphthol

  • Ilona Radkowska , Piotr Bragiel ORCID logo EMAIL logo , Radosław Belka and Pawel Ficek
Published/Copyright: October 26, 2020

Abstract

The analysis of the NLO properties of 4-methoxy-1-naphthol (4M1N) reveals that this molecule has the value of polarizability tensor, α, more than 340% greater than that obtained, at the same level of theory, for urea molecule. This improvement grows to 500% when the second-order hyperpolarizability is considered. Calculations performed within LR-PCM-B3LYP/6-311+G(3d,2p) model proved that embedding of 4M1N in the polymer matrix significantly improved these results suggesting applications of 4M1N as the cheap and effective NLO material. The molecule was also studied, both theoretically and experimentally, to determine its full vibrational characterisation and structural description. Calculations were performed with HF, MP2, SVWN and B3LYP methods, in two, varying in size, basis sets, to find optimized structures, conformational isomers and UV–VIS, IR and Raman spectra. The accordance of simulated oscillation and absorption spectra with experimental ones is very good; IR values are slightly red-shifted. NBO charge distribution analysis was made to generate frontier orbitals and find most reactive parts of the molecule.


Corresponding author: Piotr Bragiel, Department of Science and Technology, Jan Dlugosz University, Czestochowa, Poland, E-mail: .

Award Identifier / Grant number: POIG 02.02.00-26-023/08-00

Award Identifier / Grant number: 10138675

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Raman research was performed using equipment co-founded by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 (No POIG 02.02.00-26-023/08-00). Part of the calculations has been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), grant No. 10138675.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lou, Z., Zhang, S., Chen, C., Pang, X., Li, M., Wen, L. Concise synthesis of 1-naphthols under mild conditions through a copper-catalyzed arylation of methyl ketones. Adv. Synth. Catal. 2014, 356, 153–159; https://doi.org/10.1002/adsc.201300728.Search in Google Scholar

2. Rozycka-Sokolowska, E., Marciniak, B. 4-Chloro-1-naphthol. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2009, 65, o207–o210; https://doi.org/10.1107/S0108270109010063.Search in Google Scholar PubMed

3. Maphoru, M. V., Heveling, J., Pillai, S. K. Oxidative coupling of 1-naphthols over noble and base metal catalysts. Chempluschem 2014, 79, 99–106; https://doi.org/10.1002/cplu.201300307.Search in Google Scholar PubMed

4. Marciniak, B., Rozycka-Sokolowska, E. 4-Methoxy-1-naphthol: chains formed by O–H···O hydrogen bonds and pi–pi stacking interactions. Acta Crystallogr. C 2009, 65, o630–o634; https://doi.org/10.1107/S0108270109047556.Search in Google Scholar PubMed

5. Chaudhuri, S., Rudshteyn, B., Prémont-Schwarz, M., Pines, D., Pines, E., Huppert, D., Nibbering, E. T. J., Batista, V. S. Ultrafast photo-induced charge transfer of 1-naphthol and 2-naphthol to halocarbon solvents. Chem. Phys. Lett. 2017, 683, 49–56; https://doi.org/10.1016/j.cplett.2017.03.080.Search in Google Scholar

6. Nguyen, T. X., Landgraf, S., Grampp, G. Kinetics of photoinduced electron transfer reactions of ruthenim (II) comlexes and phenols, tyrosine, N-acetyl-tyrosine and ryptophan in aqueous solutions measured with modulated fluorescence spectroscopy. J. Photochem. Photobiol. B Biol. 2017, 166, 28–34 https://doi.org/10.1016/j.jphotobiol.2016.11.007.Search in Google Scholar PubMed

7. Miyan, L., Qamar, S., Ahmad, A. Synthesis, characterization and spectrophotometric studies of charge transfer interaction between donor imidazole and pi acceptor 2,4-dinitro-1-naphthol in various polar solvents. J. Mol. Liq. 2017, 225, 713–722; https://doi.org/10.1016/j.molliq.2016.10.126.Search in Google Scholar

8. Singh, N., Khan, I. M., Ahmad, A., Javed, S. Synthesis and dynamics of a novel proton transfer complex containing 3,5-dimethylpyrazole as a donor and 2,4-dinitro-1-naphthol as an acceptor: crystallographic, UV–visible spectrophotometric, molecular docking and Hirshfeld surface analyses. New J. Chem. 2017, 41, 6810–6821; https://doi.org/10.1039/C7NJ00819H.Search in Google Scholar

9. Shimizu, T., Miyazaki, M., Fujii, M. Theoretical study on the size dependence of ground-state proton transfer in 1-naphthol-ammonia clusters. J. Phys. Chem. 2016, 120, 7167–7174; https://doi.org/10.1021/acs.jpca.6b07079.Search in Google Scholar PubMed

10. Czapik, A., Nitka, A., Gdaniec, M. 5-Amino-1-naphthol. Acta Crystallogr. E Struct. Rep. Online 2009, 65; https://doi.org/10.1107/S1600536809045152.Search in Google Scholar PubMed PubMed Central

11. El-Seedi, H. R., Yamamura, S., Nishiyama, S. Reactivity of naphthol towards nucleophiles in anodic oxidation. Tetrahedron 2002, 58, 7485–7489; https://doi.org/10.1016/S0040-4020(02)00829-3.Search in Google Scholar

12. Saraswat, A., Sharma, L. K., Singh, S., Siddiqui, I. R., Singh, R. K. P. Anodic fluorination of 4-methoxy-1-naphthol and 4-nitroanisole using Et3N · 5 HF in mixed nonaqueous solvent. Russ. J. Org. Chem. 2013, 49, 1287–1290; https://doi.org/10.1134/S107042801309008X.Search in Google Scholar

13. Bragiel, P., Radkowska, I., Belka, R., Marciniak, B., Bak, Z. Structural, spectroscopic and NLO features of the 4-chloro-1-naphthol. J. Mol. Struct. 2018, 1154, 27–38 https://doi.org/10.1016/j.molstruc.2017.10.017.Search in Google Scholar

14. Kumar, A. C., Mishra, A. K. 1-Naphthol as an excited state proton transfer fluorescent probe for sensing bound-water hydration of polyvinyl alcohol. Talanta 2007, 71, 2003–2006; https://doi.org/10.1016/j.talanta.2006.09.010.Search in Google Scholar

15. Gu, W., Bi, S., Weiss, R. G. Photo-Fries rearrangements of 1-naphthyl esters in the glassy and melted states of poly (vinyl acetate). Comparisons with reactions in less polar polymers and low-viscosity solvents †. Photochem. Photobiol. Sci. 2002, 1, 52–59; https://doi.org/10.1039/b107011h.Search in Google Scholar

16. Tomasi, J., Mennucci, B., Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093; https://doi.org/10.1021/cr9904009.Search in Google Scholar

17. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. I., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farks, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian09 Rev.C.01; Gaussian Inc.: Wallingford CT, 2010.Search in Google Scholar

18. Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69–89; https://doi.org/10.1103/RevModPhys.23.69.Search in Google Scholar

19. Cremer, D. Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms. Wiley Interdiscipl. Rev. Comput. Mol. Sci. 2011, 1, 509–530; https://doi.org/10.1002/wcms.58.Search in Google Scholar

20. Hertwig, R. H., Koch, W. On the parameterization of the local correlation functional. What is Becke-3-LYP?. Chem. Phys. Lett. 1997, 268, 345–351; https://doi.org/10.1016/S0009-2614(97)00207-8.Search in Google Scholar

21. Kirste, B. Applications of density functional theory to theoretical organic chemistry. Chem. Sci. J. 2016, 7, 1000127; https://doi.org/10.4172/2150-3494.1000127.Search in Google Scholar

22. Tirado-rives, J., Jorgensen, W. L. Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theor. Comput. 2008, 4, 297–306; https://doi.org/10.1021/ct700248k.Search in Google Scholar

23. Grimme, S., Antony, J., Schwabe, T., Christian, M. Density functional theory with dispersion corrections for supramolecular structures , aggregates , and complexes of (bio) organic molecules. Org. Biomol. Chem. 2007, 5, 741–758; https://doi.org/10.1039/b615319b.Search in Google Scholar

24. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction „DFT-D… for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.Search in Google Scholar

25. Barone, V., Biczysko, M., Pavone, M. The role of dispersion correction to DFT for modelling weakly bound molecular complexes in the ground and excited electronic states. Chem. Phys. 2008, 346, 247–256; https://doi.org/10.1016/j.chemphys.2008.02.036.Search in Google Scholar

26. Halls, M. D., Velkovski, J., Schlegel, H. B. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor. Chem. Account. 2001, 105, 413–421; https://doi.org/10.1007/s002140000204.Search in Google Scholar

27. Keresztury, G., Holly, S., Besenyei, G., Varga, J., Wang, A., Durig, J. R. Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N,N-dimethylthiocarbamate. Spectrochim. Acta Part A Mol. Spectrosc. 1993, 49, 2007–2026; https://doi.org/10.1016/S0584-8539(09)91012-1.Search in Google Scholar

28. Michalska, D., Wysokiński, R. The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. Chem. Phys. Lett. 2005, 403, 211–217; https://doi.org/10.1016/j.cplett.2004.12.096.Search in Google Scholar

29. Jamroz, M. H. Vibrational Energy Distribution Analysis VEDA4, 2010.Search in Google Scholar

30. Muzomwe, M., Boeckx, B., Maes, G., Kasende, O. E. Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-Naphthol. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 108, 14–19; https://doi.org/10.1016/j.saa.2013.01.065.Search in Google Scholar PubMed

31. Reed, A. E., Curtiss, L. A., Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 1988, 88, 899–926; https://doi.org/10.1021/cr00088a005.Search in Google Scholar

32. Mao, J. X. Atomic charges in molecules : a classical concept in modern com- putational chemistry. J. Postdr. Res. 2014, 2, 15–18.10.14304/SURYA.JPR.V2N2.2Search in Google Scholar

33. Jabłoński, M., Krygowski, T. Study of the influence of intermolecular interaction on classical and reverse substituent effects in parasubstituted phenylboranes. New J. Chem. 2020; https://doi.org/10.1039/D0NJ01334J.Search in Google Scholar

34. Thirumurugan, R., Babu, B., Anitha, K. Experimental and computational perspectives on bis (creatininium) succinate : an efficient organic nonlinear optical material. Z. Phys. Chem. 2017, 231, 1849–1874; https://doi.org/10.1515/zpch-2016-0896.Search in Google Scholar

35. Parthasarathi, R., Subramanian, V., Roy, D. R., Chattaraj, P. K. Electrophilicity index as a possible descriptor of biological activity. Bioorg. Med. Chem. 2004, 12, 5533–5543; https://doi.org/10.1016/j.bmc.2004.08.013.Search in Google Scholar PubMed

36. Roy, R. K., Saha, S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu. Rep. Sect. C Phys. Chem. 2010, 106, 118; https://doi.org/10.1039/b811052m.Search in Google Scholar

37. Yang, W., Parr, R. G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723–6726; https://doi.org/10.1073/pnas.82.20.6723.Search in Google Scholar PubMed PubMed Central

38. Sert, Y., Sreenivasa, S., Doǧan, H., Mohan, N. R., Suchetan, P. A., Ucun, F. Vibrational frequency analysis, FT-IR and Laser-Raman spectra, DFT studies on ethyl (2E)-2-cyano-3-(4-methoxyphenyl)-acrylate. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 130, 96–104; https://doi.org/10.1016/j.saa.2014.03.061.Search in Google Scholar PubMed

39. Asiri, A. M., Ersanli, C. C., Şahin, O., Arshad, M. N., Hameed, S. A. Molecular structure, spectroscopic and quantum chemical studies of 1′,3′,3′-trimethylspiro[benzo[f]chromene-3,2′-indoline. J. Mol. Struct. 2016, 1111, 108–117; https://doi.org/10.1016/j.molstruc.2016.01.086.Search in Google Scholar

40. Shkir, M., Alfaify, S., Abbas, H., Muhammad, S. First principal studies of spectroscopic (IR and Raman, UV–visible), molecular structure, linear and nonlinear optical properties of l-arginine p-nitrobenzoate monohydrate (LANB): a new non-centrosymmetric material. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 147, 84–92; https://doi.org/10.1016/j.saa.2015.02.111.Search in Google Scholar PubMed

41. Kannan, V., Karthick, S. Photoluminescence , third-order nonlinear optical and DFT studies of hydrazonium L-tartrate – combined experimental and theoretical studies 1 introduction. Z. Phys. Chem. 2019, 233, 1293–1323 https://doi.org/10.1515/zpch-2018-1231.Search in Google Scholar

42. Chattaraj, P. K., Sarkar, U., Roy, D. R. Electrophilicity Index. Chem. Rev. 2006, 106, 2065–2091; https://doi.org/10.1021/cr040109f.Search in Google Scholar PubMed

43. Chattaraj, P. K., Giri, S. Electrophilicity index within a conceptual DFT framework. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2009, 105, 13–39; https://doi.org/10.1039/b802832j.Search in Google Scholar

44. Zhan, C., Nichols, J. A., Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J. Phys. Chem. 2003, 107, 4184–4195; https://doi.org/10.1021/jp0225774.Search in Google Scholar

45. Fuentealba, P., Pérez, P., Contreras, R. On the condensed Fukui function. J. Chem. Phys. 2000, 113, 2544–2551; https://doi.org/10.1063/1.1305879.Search in Google Scholar

46. Ram, S., Pandey, V. N., Thakur, S. N. Infrared and Raman studies of some naphthols. Pramana J. Phys. 1983, 20, 163–174 https://doi.org/10.1007/BF02846604.Search in Google Scholar

47. Jamróz, M. H. Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 114, 220–230; https://doi.org/10.1016/j.saa.2013.05.096.Search in Google Scholar PubMed

48. Jamróz, M. H., Ostrowski, S., Dobrowolski, J. C. Facilitation of the PED analysis of large molecules by using global coordinates. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 149, 463–467; https://doi.org/10.1016/j.saa.2015.04.038.Search in Google Scholar PubMed

49. Snehalatha, M., Ravikumar, C., Hubert Joe, I., Sekar, N., Jayakumar, V. S. Spectroscopic analysis and DFT calculations of a food additive carmoisine. Spectrochim. Acta Mol. Biomol. Spectrosc. 2009, 72, 654–662; https://doi.org/10.1016/j.saa.2008.11.017.Search in Google Scholar PubMed

50. Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd ed.; John Wiley & Sons: Chichester, 2001; https://doi.org/10.1002/jrs.1238.Search in Google Scholar

51. Ragavendran, V., Muthunatesan, S. An insight into the conformal flexibility and vibrational behavior of 2-nitroso-1-naphthol: a density functional theory approach. Spectrosc. Lett. 2016, 49, 294–303. http://dx.doi.org/10.1080/00387010.2016.1145126.10.1080/00387010.2016.1145126Search in Google Scholar

52. Versanai, G. Vibrational Spectra of Benzene Derivatives; Academic Press: New York, 1969.10.1016/B978-0-12-714950-9.50007-7Search in Google Scholar

53. George, W. O., McIntyre, P. S., Mowthorpe, D. J. Infrared Spectroscopy; John Wiley & Sons: London, 1987.Search in Google Scholar

54. Raja, G., Saravanan, K., Sivakumar, S. Ab initio molecular orbital and density functional theoretical studies on 1-naphtol. Int. J. Appl. Phys. Math. 2011, 1, 118–123 https://doi.org/10.7763/IJAPM.2011.V1.23.Search in Google Scholar

55. Ramalingam, S., Periandy, S., Govindarajan, M., Mohan, S. FT-IR and FT-Raman vibrational spectra and molecular structure investigation of nicotinamide: a combined experimental and theoretical study. Spectrochim. Acta Mol. Biomol. Spectrosc. 2010, 75, 1552–1558; https://doi.org/10.1016/j.saa.2010.02.015.Search in Google Scholar PubMed

56. Krishnakumar, V., Balachandran, V., Chithambarathanu, T. Density functional theory study of the FT-IR spectra of phthalimide and N-bromophthalimide. Spectrochim. Acta Mol. Biomol. Spectrosc. 2005, 62, 918–925; https://doi.org/10.1016/j.saa.2005.02.051.Search in Google Scholar PubMed

57. Prabavathi, N., Nilufer, A., Krishnakumar, V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 121, 483–493; https://doi.org/10.1016/j.saa.2013.10.102.Search in Google Scholar PubMed

58. Gil, D. M., Lizarraga, E., Echeverría, G. A., Piro, O. E., Catalán, C. A. N., Ben Altabef, A. A combined experimental and theoretical study of the supramolecular self-assembly of the natural benzopyran 2,2-dimethyl-3-hydroxy-6-acetyl-chromane and its isomeric benzofuran 10,11-dihydro-10-hydroxytremetone. J. Mol. Struct. 2017, 1146, 164–178; https://doi.org/10.1016/j.molstruc.2017.05.137.Search in Google Scholar

59. Mani, P., Suresh, S. FTIR and FTR spectral studies on 4-VINYL cyclohexene. Rasayan J. Chem. 2009, 2, 340–344.Search in Google Scholar

60. Trivedi, M. K., Branton, A., Trivedi, D., Nayak, G., Mishra, R. K., Jana, S. Characterization of physicochemical and thermal properties of biofield treated ethyl cellulose and methyl cellulose. Int. J. Biomed. Mater. Res. 2015, 3, 83–91https://doi.org/10.11648/j.ijbmr.20150306.12.Search in Google Scholar

61. Heredia-Guerrero, J. A., BenÃ-tez, J. J., DomÃ-nguez, E., Bayer, I. S., Cingolani, R., Athanassiou, A., Heredia, A. Infrared and Raman spectroscopic features of plant cuticles: a review. Front. Plant Sci. 2014, 5, 1–14; https://doi.org/10.3389/fpls.2014.00305.Search in Google Scholar PubMed PubMed Central

62. Karakaya, M., Karakas, A., Taser, M., Wolska, N., Arof, A. K., Sahraoui, B. Second-order nonlinearities of anionic 3-dicyanomethylen-5,5-dimethyle-1-[2-(4-hydroxyphenyl)ethenyl)]-cyclohexene. Mater. Today Proc. 2016, 3, S12–S20; https://doi.org/10.1016/j.matpr.2016.01.003.Search in Google Scholar

63. Amalanathan, M., Joe, I. H., Rastogi, V. K. 1 investigation of charge transfer NLO crystal Naphthalene Picrate for THz application. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 108, 256–267; https://doi.org/10.1016/j.saa.2013.01.097.Search in Google Scholar PubMed

64. Alyar, H. A review on nonlinear optical properties of donor-acceptor derivatives of naphthalene and azanaphthalene. Rev. Adv. Mater. Sci. 2013, 34, 79–87.Search in Google Scholar

65. Nagabalasubramanian, P. B., Karabacak, M., Periandy, S. Molecular structure, polarizability, hyperpolarizability analysis and spectroscopic characterization of 1-(chloromethyl)-2-methylnaphthalene with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, 85, 43–52; https://doi.org/10.1016/j.saa.2011.09.001.Search in Google Scholar PubMed

66. Dinesh, M., Maadeswaran, P., Ho, M., Babu, B., Chandrasekar, S. Growth , vibrational , optical , mechanical and DFT investigations of an organic nonlinear optical material – phenylurea. Z. Phys. Chem. 2019, 233, 1659–1682 https://doi.org/10.1515/zpch-2018-1230.Search in Google Scholar

67. Vila, F. D., Strubbe, D. A., Takimoto, Y., Andrade, X., Rubio, A., Louie, S. G., Rehr, J. J. Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids. J. Chem. Phys. 2010, 133; https://doi.org/10.1063/1.3457362.Search in Google Scholar PubMed

68. Prasad, M. V. S., Sri, N. U., Veeraiah, A., Veeraiah, V., Chaitanya, K. Molecular structure, vibrational spectroscopic (FT-IR, FT-Raman),UV–Vis spectra, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis, thermodynamic properties of 2,6-dichloropyrazine by ab inito HF and density functional method. J. Atom. Mol. Sci. 2013, 4, 1–17; https://doi.org/10.4208/jams.012712.031412a.Search in Google Scholar

69. Ejuh, G. W., Nouemo, S., Nya, F. T., Marie, N. J. Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1,4-bis(3-carboxyl-3-oxo-prop-1-enyl) benzene molecule. J. Iran. Chem. Soc. 2016, 13, 2039–2048; https://doi.org/10.1007/s13738-016-0921-z.Search in Google Scholar

70. Saxena, A., Agrawal, M., Gupta, A. Vibrational study, molecular properties and first-order molecular hyperpolarizability of Methyl 2-amino 5-bromobenzoate using DFT method. Opt. Mater. 2015, 46, 154–167; https://doi.org/10.1016/j.optmat.2015.04.012.Search in Google Scholar

71. Karnan, M., Balachandran, V., Murugan, M., Murali, M. K. Quantum chemical vibrational study, molecular property, FTIR, FT-Raman spectra, NBO, HOMO-LUMO energies and thermodynamic properties of 1-methyl-2-phenyl benzimidazole. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 130, 143–151; https://doi.org/10.1016/j.saa.2014.03.128.Search in Google Scholar PubMed

72. Kessentini, Y., Ben, A., Al-juaid, S. S., Mhiri, T., Elaoud, Z. Synthesis and non linear optical properties of new inorganic – organic hybrid material : 4-Benzylpiperidinium sulfate monohydrate. Opt. Mater. 2016, 53, 101–108; https://doi.org/10.1016/j.optmat.2016.01.035.Search in Google Scholar

73. Krishnakumar, V., Barathi, D., Mathammal, R., Balamani, J., Jayamani, N. Spectroscopic properties, NLO, HOMO-LUMO and NBO of maltol. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 121, 245–253; https://doi.org/10.1016/j.saa.2013.10.068.Search in Google Scholar PubMed

74. Krishnakumar, V., Nagalakshmi, R., Manohar, S., Piasecki, M., Kityk, I. V., Bragiel, P. Parametrical optical effects in the 1:1 complex of resorcinol and urea-a non linear optical crystal. Phys. B Condens. Matter 2010, 405; https://doi.org/10.1016/j.physb.2009.08.057.Search in Google Scholar

75. Narsaria, A. K., Ehlers, A. W., Ruijter, J. D., Guerra, T. A., Hamlin, C. F., Lammertsma, K., Bickelhaupt, F. M. Performance of TDDFT vertical excitation energies of core-substituted naphthalene diimides. J. Comput. Chem. 2020, 41, 1448–1455; https://doi.org/10.1002/jcc.26188.Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2019-1594).


Received: 2019-12-04
Accepted: 2020-10-05
Published Online: 2020-10-26
Published in Print: 2021-09-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2019-1594/html
Scroll to top button