Home Highly efficient adsorption of Cu2+ and Cr6+ by polyethyleneimine-modified nanocellulose from sunflower stem pith
Article
Licensed
Unlicensed Requires Authentication

Highly efficient adsorption of Cu2+ and Cr6+ by polyethyleneimine-modified nanocellulose from sunflower stem pith

  • Zhiyun Sun , Tianqi Feng , Chen Yan , Shijing Sun , Guanyu Wu , Xin Zhou EMAIL logo and Jing Luo EMAIL logo
Published/Copyright: July 28, 2025
Become an author with De Gruyter Brill

Abstract

Sunflower stem pith-derived cellulose (SSPC) and nanocellulose (TOCN) were modified with polyethyleneimine (PEI) to enhance their adsorption of Cu2+ and Cr6+. PEI modification significantly enhanced the adsorption capacity for Cu2+, increasing it by 5.2 times compared to pure cellulose. Meanwhile, TOCN-PEI exhibited superior adsorption performance for Cr6+, attributed to its higher PEI graft density compared to SSPC. The adsorption kinetics were best described by the pseudo-second-order model, while the Langmuir isotherm model provided the best fit for equilibrium data, indicating monolayer adsorption. Thermodynamic analysis revealed that the adsorption process was exothermic (ΔH0 < 0) and less favorable at elevated temperatures. After five adsorption/desorption cycles, TOCN-PEI retained approximately 63.0 % of its initial adsorption efficiency, demonstrating reusability. Overall, TOCN-PEI is a promising adsorbent for Cu2+ and Cr6+ removal, offering exceptionally high Cu2+ adsorption capacity (217.3 mg/g), effective Cr6+ removal (196.7 mg/g), and good reusability.


Corresponding authors: Xin Zhou, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China; and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China, E-mail: ; and Jing Luo, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China; and School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China, E-mail:

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (Youth Program) (BK20210610), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_0339), the Nanjing Forestry University student innovation training program project (202410298015Z), and Qing Lan Project of Jiangsu Province, PR China.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Zhiyun Sun: investigation, formal analysis, methodology, writing – review & editing. Tianqi Feng: methodology, investigation. Chen Yan: conceptualization, methodology, software. Shijing Sun: writing – review & editing. Guanyu Wu: validation, writing – review & editing. Xin Zhou: conceptualization, resources, supervision, writing – review & editing. Guanyu Wu: validation, writing – review & editing. All authors read and approved the final manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ng, C. L.; Chow, W. S.; Din, M.; Taufik, A.; Leh, C. P.; Siengchin, S. Crosslinked Polymer Nanocomposites for Wastewater Heavy Metal Adsorption: A Review. Express Polym. Lett. 2023, 17 (6), 580–595; https://doi.org/10.3144/expresspolymlett.2023.43.Search in Google Scholar

2. Yan, W.; Hou, C.; Bai, Y.; Qian, Z. Preparation of Nylon Based Magnetic Adsorption Materials and their Adsorption Properties for Heavy Metal Ions. Adsorption 2024, 30 (6), 867–875; https://doi.org/10.1007/s10450-024-00449-8.Search in Google Scholar

3. Sundararaman, S.; Chacko, J.; Prabu, D.; Karthikeyan, M.; Kumar, J. A.; Saravanan, A.; Thamarai, P.; Rajasimman, M.; Bokov, D. O. Noteworthy Synthesis Strategies and Applications of Metal-Organic Frameworks for the Removal of Emerging Water Pollutants from Aqueous Environment. Chemosphere 2024, 362, 142729; https://doi.org/10.1016/j.chemosphere.2024.142729.Search in Google Scholar PubMed

4. Yuan, F.; Yan, D.; Song, S.; Zhang, J.; Yang, Y.; Chen, Z.; Lu, J.; Wang, S.; Sun, Y. Removal of Heavy Metals from Water by Adsorption on Metal Organic Frameworks: Research Progress and Mechanistic Analysis in the Last Decade. Chem. Eng. J. 2025, 506, 160063; https://doi.org/10.1016/j.cej.2025.160063.Search in Google Scholar

5. Kapoor, R. T.; Mfarrej, M. F. B.; Alam, P.; Rinklebe, J.; Ahmad, P. Accumulation of Chromium in Plants and its Repercussion in Animals and Humans. Environ. Pollut. 2022, 301, 119044; https://doi.org/10.1016/j.envpol.2022.119044.Search in Google Scholar PubMed

6. Yang, C.-M.; Chien, M.-Y.; Chao, P.-C.; Huang, C.-M.; Chen, C.-H. Investigation of Toxic Heavy Metals Content and Estimation of Potential Health Risks in Chinese Herbal Medicine. J. Hazard. Mater. 2021, 412, 125142; https://doi.org/10.1016/j.jhazmat.2021.125142.Search in Google Scholar PubMed

7. Deivayanai, V.; Yaashikaa, P.; Saravanan, A.; Vickram, A. Enhanced Elimination of Chromium (VI) Ions from Wastewater with Silica-Mixed Magnetic Nanomaterial: Isotherm and Kinetic Studies. Environ. Dev. Sustainability 2024, 1–25; https://doi.org/10.1007/s10668-024-05688-x.Search in Google Scholar

8. Das, N. Recovery of Precious Metals through Biosorption—A Review. Hydrometallurgy 2010, 103 (1–4), 180–189; https://doi.org/10.1016/j.hydromet.2010.03.016.Search in Google Scholar

9. Al-Asad, H. A.; Parniske, J.; Qian, J.; Alex, J.; Ramaswami, S.; Kaetzl, K.; Morck, T. Development and Application of a Predictive Model for Advanced Wastewater Treatment by Adsorption onto Powdered Activated Carbon. Water Res. 2022, 217, 118427; https://doi.org/10.1016/j.watres.2022.118427.Search in Google Scholar PubMed

10. Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water 2023, 15 (12), 2215; https://doi.org/10.3390/w15122215.Search in Google Scholar

11. Thamarai, P.; Deivayanai, V.; Karishma, S.; Saravanan, A.; Yaashikaa, P.; Vickram, A. Adsorption Strategies in Surface Modification Techniques for Seaweeds in Wastewater Treatment: Exploring Environmental Applications. Rev. Environ. Contam. Toxicol. 2024, 262 (1), 18; https://doi.org/10.1007/s44169-024-00071-3.Search in Google Scholar

12. Sun, P.; Wang, M.; Wu, T.; Guo, L.; Han, W. Covalent Crosslinking Cellulose/Graphene Aerogels with High Elasticity and Adsorbability for Heavy Metal Ions Adsorption. Polymers 2023, 15 (11), 2434; https://doi.org/10.3390/polym15112434.Search in Google Scholar PubMed PubMed Central

13. Kaur, R.; Sandhu, S.; Pujari, A. K.; Paul, S.; Bhaumik, J. Lignin‐Derived Metal Oxide Nanoadsorbents for Wastewater Remediation. ChemistrySelect 2024, 9 (37), e202402934; https://doi.org/10.1002/slct.202402934.Search in Google Scholar

14. Kushwaha, J.; Singh, R. Cellulose Hydrogel and its Derivatives: A Review of Application in Heavy Metal Adsorption. Inorg. Chem. Commun. 2023, 152, 110721; https://doi.org/10.1016/j.inoche.2023.110721.Search in Google Scholar

15. Nikiforova, T.; Kozlov, V.; Razgovorov, P.; Politaeva, N.; Velmozhina, K.; Shinkevich, P.; Chelysheva, V. Heavy Metal Ions (II) Sorption by a Cellulose-Based Sorbent Containing Sulfogroups. Polymers 2023, 15 (21), 4212; https://doi.org/10.3390/polym15214212.Search in Google Scholar PubMed PubMed Central

16. Aslam, A. A.; Hassan, S. U.; Saeed, M. H.; Kokab, O.; Ali, Z.; Nazir, M. S.; Siddiqi, W.; Aslam, A. A. Cellulose-Based Adsorbent Materials for Water Remediation: Harnessing their Potential in Heavy Metals and Dyes Removal. J. Cleaner Prod. 2023, 421, 138555; https://doi.org/10.1016/j.jclepro.2023.138555.Search in Google Scholar

17. Hong, H.-J.; Yu, H.; Park, M.; Jeong, H. S. Recovery of Platinum from Waste Effluent Using Polyethyleneimine-Modified Nanocelluloses: Effects of the Cellulose Source and Type. Carbohydr. Polym. 2019, 210, 167–174; https://doi.org/10.1016/j.carbpol.2019.01.079.Search in Google Scholar PubMed

18. Yan, C.; Wu, F.; Zhou, X.; Luo, J.; Jiang, K. Superadsorbent Aerogel Based on Sunflower Stem Pith Cellulose and Layered Double Hydroxides Modified Montmorillonite for Methylene Blue Removal from Water Solution. Int. J. Biol. Macromol. 2024, 257, 128749; https://doi.org/10.1016/j.ijbiomac.2023.128749.Search in Google Scholar PubMed

19. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617 (1), 1–16.Search in Google Scholar

20. Yan, C.; Luo, J.; Huang, C.; Liu, L.; Sun, S.; Zhou, X. Fabrication of Nanocellulose-Based High-Mechanical and Super-hydrophobic Xerogels for Speedy Oil Absorbents. Carbohydr. Polym. 2025, 351, 123097; https://doi.org/10.1016/j.carbpol.2024.123097.Search in Google Scholar PubMed

21. Poletto, M.; Zattera, A. J.; Forte, M. M.; Santana, R. M. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresour. Technol. 2012, 109, 148–153; https://doi.org/10.1016/j.biortech.2011.11.122.Search in Google Scholar PubMed

22. Najahi, A.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Putaux, J.-L.; Boufi, S. Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potential. Nanomaterials 2022, 13 (1), 126; https://doi.org/10.3390/nano13010126.Search in Google Scholar PubMed PubMed Central

23. Jiang, Y.; Lu, Y.; Liu, J.; Zhao, Y.; Fan, F. Characterization of Bamboo Shoot Cellulose Nanofibers Modified by TEMPO Oxidation and Ball Milling Method and its Application in W/O Emulsion. Lwt 2024, 205, 116563; https://doi.org/10.1016/j.lwt.2024.116563.Search in Google Scholar

24. Zhang, Q.; Cheng, L.; Ma, X.; Zhou, X.; Xu, Y. Revalorization of Sunflower Stalk Pith as Feedstock for the Coproduction of Pectin and Glucose Using a Two-Step Dilute Acid Pretreatment Process. Biotechnol. Biofuels 2021, 14, 1–9; https://doi.org/10.1186/s13068-021-02045-2.Search in Google Scholar PubMed PubMed Central

25. Zhang, N.; Zang, G.-L.; Shi, C.; Yu, H.-Q.; Sheng, G.-P. A Novel Adsorbent TEMPO-Mediated Oxidized Cellulose Nanofibrils Modified with PEI: Preparation, Characterization, and Application for Cu (II) Removal. J. Hazard. Mater. 2016, 316, 11–18; https://doi.org/10.1016/j.jhazmat.2016.05.018.Search in Google Scholar PubMed

26. Wang, Z.; Wang, Y.; Yao, C. Highly Efficient Removal of Uranium (VI) from Aqueous Solution Using the Polyethyleneimine Modified Magnetic Chitosan. J. Polym. Environ. 2022, 30, 855–866; https://doi.org/10.1007/s10924-021-02242-y.Search in Google Scholar

27. Almutairi, F. M.; Williams, P. M.; Lovitt, R. W. Polymer Enhanced Membrane Filtration of Metals: Retention of Single and Mixed Species of Metal Ions Based on Adsorption Isotherms. Desalin. Water Treat. 2011, 28 (1-3), 130–136; https://doi.org/10.5004/dwt.2011.1628.Search in Google Scholar

28. Wang, X.; Luo, S.; Luo, J.; Liu, L.; Hu, Y.; Li, Z.; Jiang, L.; Qin, H. Fluorescent Cellulose Nanofibrils Hydrogels for Sensitive Detection and Efficient Adsorption of Cu2+ and Cr6+. Carbohydr. Polym. 2025, 347, 122748; https://doi.org/10.1016/j.carbpol.2024.122748.Search in Google Scholar PubMed

29. Chen, X.; Song, Z.; Yuan, B.; Li, X.; Li, S.; Nguyen, T. T.; Guo, M.; Guo, Z. Fluorescent Carbon Dots Crosslinked Cellulose Nanofibril/Chitosan Interpenetrating Hydrogel System for Sensitive Detection and Efficient Adsorption of Cu (II) and Cr (VI). Chem. Eng. J. 2022, 430, 133154; https://doi.org/10.1016/j.cej.2021.133154.Search in Google Scholar

30. Zhong, Q.-Q.; Yue, Q.-Y.; Li, Q.; Gao, B.-Y.; Xu, X. Removal of Cu (II) and Cr (VI) from Wastewater by an Amphoteric Sorbent Based on Cellulose-Rich Biomass. Carbohydr. Polym. 2014, 111, 788–796; https://doi.org/10.1016/j.carbpol.2014.05.043.Search in Google Scholar PubMed

31. Xu, Q.; Huang, X.; Guo, L.; Wang, Y.; Jin, L. Enhancing Removal of Cr (VI), Pb2+, and Cu2+ from Aqueous Solutions Using Amino-Functionalized Cellulose Nanocrystal. Molecules 2021, 26 (23), 7315; https://doi.org/10.3390/molecules26237315.Search in Google Scholar PubMed PubMed Central

32. Garg, U.; Kaur, M.; Jawa, G.; Sud, D.; Garg, V. Removal of Cadmium (II) from Aqueous Solutions by Adsorption on Agricultural Waste Biomass. J. Hazard. Mater. 2008, 154 (1-3), 1149–1157; https://doi.org/10.1016/j.jhazmat.2007.11.040.Search in Google Scholar PubMed

33. Wu, Y.-G.; Cao, Q.; Dai, S.; Zhao, J.; Cai, Y.-J.; Zhao, C.-Z.; Yang, Z.-H.; Sun, Y.-X.; Yue, T.; Sang, K.-X.; Gai, J. G.; Tao, M. J. Bio-Based Aerogel Beads with Multistage Pore Network Structure for Cr (VI) Removal Using Ice Template Method. Chem. Eng. J. 2025, 159983; https://doi.org/10.1016/j.cej.2025.159983.Search in Google Scholar

34. Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D. D. Malic Acid-Enhanced Chitosan Hydrogel Beads (mCHBs) for the Removal of Cr (VI) and Cu (II) from Aqueous Solution. Chem. Eng. J. 2018, 353, 225–236; https://doi.org/10.1016/j.cej.2018.06.143.Search in Google Scholar

35. Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of Physically Crosslinked Chitosan/Sodium Alginate/Calcium Ion Double-Network Hydrogel and its Application to Heavy Metal Ions Removal. Chem. Eng. J. 2020, 393, 124728; https://doi.org/10.1016/j.cej.2020.124728.Search in Google Scholar

36. Li, M.; Messele, S. A.; Boluk, Y.; El-Din, M. G. Isolated Cellulose Nanofibers for Cu (II) and Zn (II) Removal: Performance and Mechanisms. Carbohydr. Polym. 2019, 221, 231–241; https://doi.org/10.1016/j.carbpol.2019.05.078.Search in Google Scholar PubMed

37. Wang, X.; Wang, C. Chitosan-Poly (Vinyl Alcohol)/Attapulgite Nanocomposites for Copper (II) Ions Removal: pH Dependence and Adsorption Mechanisms. Colloids Surf., A 2016, 500, 186–194; https://doi.org/10.1016/j.colsurfa.2016.04.034.Search in Google Scholar

38. Ren, L.; Xu, J.; Zhang, Y.; Zhou, J.; Chen, D.; Chang, Z. Preparation and Characterization of Porous Chitosan Microspheres and Adsorption Performance for Hexavalent Chromium. Int. J. Biol. Macromol. 2019, 135, 898–906; https://doi.org/10.1016/j.ijbiomac.2019.06.007.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2025-0089).


Received: 2025-05-20
Accepted: 2025-07-07
Published Online: 2025-07-28
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2025-0089/html
Scroll to top button