Home The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
Article Open Access

The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2

  • Niklas Brandt and Guido J. Reiss ORCID logo EMAIL logo
Published/Copyright: January 18, 2021

Abstract

C8H14Br2N2, monoclinic, I2/a (no. 15), a = 9.0331(9) Å, b = 13.4475(14) Å, c = 27.586(3) Å, β = 94.879(9)°, Z = 12, V = 3338.8(6) Å3, Rgt(F) = 0.0582, wRref = 0.0885, T = 290 K.

CCDC no.: 2053150

Tables 1 and 2 contain details on the crystal structure as well as measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colorless needle
Size:0.67 × 0.14 × 0.04 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:7.24 mm−1
Diffractometer, scan mode:Xcalibur, ω
θmax, completeness:27.0°, >99%
N(hkl)measured, N(hkl)unique9870, 9870
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6167
N(param)refined:171
Programs:Diamond [1], CrysAlisPRO [2], SHELX [3], [4], [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Br10.34206 (7)0.65873 (5)0.59810 (3)0.0450 (2)
Br20.38821 (8)0.29498 (6)0.65036 (3)0.0508 (2)
Br30.81651 (7)0.00903 (5)0.57816 (3)0.0446 (2)
N10.1378 (5)0.4737 (4)0.64036 (19)0.0421 (17)
H110.173 (4)0.536 (2)0.6344 (6)0.063*
H120.061 (3)0.459 (3)0.6176 (8)0.063*
H130.213 (4)0.428 (3)0.6384 (5)0.063*
N20.4155 (5)0.3444 (4)0.87023 (19)0.0416 (17)
H210.320 (4)0.317 (3)0.8673 (2)0.062*
H220.413 (4)0.405 (2)0.8869 (8)0.062*
H230.481 (3)0.301 (3)0.8875 (8)0.062*
N30.5516 (5)0.1762 (4)0.5630 (2)0.0428 (18)
H310.474 (3)0.136 (3)0.5693 (6)0.064*
H320.558 (4)0.2278 (18)0.5847 (8)0.064*
H330.638 (4)0.140 (3)0.5661 (5)0.064*
C10.0842 (7)0.4706 (5)0.6899 (2)0.0418 (19)
H1A0.0463930.4045930.6957820.050*
H1B0.0028490.5172700.6913160.050*
C20.2040 (6)0.4957 (5)0.7292 (2)0.0321 (16)
C30.2424 (7)0.5936 (5)0.7388 (3)0.0418 (18)
H30.1959750.6445030.7203990.050*
C40.3483 (8)0.6149 (5)0.7752 (3)0.0445 (19)
H4A0.3731140.6809050.7817680.053*
C50.4195 (7)0.5411 (6)0.8024 (2)0.0420 (18)
H5A0.4924740.5576760.8268500.050*
C60.3841 (7)0.4433 (5)0.7938 (2)0.0336 (17)
C70.2749 (7)0.4212 (5)0.7569 (2)0.0345 (17)
H7A0.2490170.3551920.7506050.041*
C80.4656 (7)0.3617 (5)0.8211 (2)0.0434 (19)
H8A0.4530200.3007850.8024280.052*
H8B0.5706840.3775900.8243680.052*
C90.5275 (7)0.2154 (6)0.5133 (2)0.048 (2)
H9A0.5265520.1607670.4903720.057*
H9B0.6089550.2592400.5070760.057*
C100.3830 (7)0.2718 (6)0.5057 (2)0.0357 (17)
C110.3821 (8)0.3735 (6)0.5059 (3)0.057 (2)
H11A0.4717750.4077500.5101170.069*
C120.2500000.4268 (8)0.5000000.066 (3)
H12A0.2499980.4959450.5000010.079*
C130.2500000.2213 (7)0.5000000.037 (2)
H13A0.2500010.1521850.5000000.044*

Source of material

The title compound 1,3-phenylenedimethanaminium dibromide was synthesized by the reaction of 63% aqueous hydrobromic acid and 1,3-phenylenedimethanamine at ambient conditions. In a typical experiment 1 mmol of 1,3-phenylenedimethanamine is reacted with an excess of hydrobromic acid. The resulting light-yellow solution was stored in a desiccator equipped with a small amount of molecular sieve. Clear colourless crystals were obtained after a few days.

Experimental details

A crystal of the title compound was directly selected from the mother liquor and mounted on an Xcalibur four-circle diffractometer equipped with an EOS detector [2]. An empirical absorption correction using spherical harmonics based on multi-scans was applied [2]. The structure solution, completion and the refinement, succeeded using the SHELX program system [3], [4], [5]. All investigated crystals showed a systematic non-merohedral twinning with a systematic and perfect overlap of some groups of reflections. We finally selected a crystal with an approximate twin ratio of 1:1. The twin operation is a twofold axis around 0.000, 0.707, 0.707 in the reciprocal lattice (0.060, 0.970 0.234 for the direct lattice). The resulting twin matrix is: −1.000, 0.000, 0.000; 0.100, 0.612, 0.387; 0.100, 1.613, −0.613. Atomic coordinates of hydrogen atoms were added using the corresponding riding model with fixed Uiso parameters. The maximum residual electron density peaks (all > 0.66 e⋅Å−3) are right next to the bromide anions.

Comment

There is a longstanding interest of one of us (GJR) in the structural chemistry of diaminium salts and their hydrogen bonding schemes [6], [7], [8], [9].

We have already shown that the lengths and shapes of organic cations influence or even determine the topology of the embedded polyhalogenide anions [6 and reference therein]. The final structural motif of such a system is a compromise between the accessible molecular conformations, hydrogen bonding and other weak intermolecular forces like van der Waals interactions of adjacent alkyl chains [8], [, 10]. In presence of aryl moieties CH–π and π-π interaction needs to be considered [11]. The 1,3-phenylenedimethanaminium cation is a typical cationic, semi-flexible tecton, which can form hydrogen-bonded and cross-linked networks. In contrast to simple aliphatic diaminium cations the conformational adjustments are restricted to rotations about the CH2–aryl single bond (see the left part of the Figure).

There are already some 1,3-phenylenedimethanaminium salt structures listed in The Cambrige Structural Database. A small share of these structures contain simple counter anions like: chloride [12], perchlorate [13], sulfate [14], nitrate [15], tetraiodide [16], which form hydrogen bonded networks with the 1,3-phenylenedimethanaminium cation. Furthermore some 1,3-phenylenedimethanaminium salts with complex counter anions are in the focus of current research [17], [, 18] because of their physical properties.

The asymmetric unit of the title structure contains one 1,3-phenylenedimethanaminium dication in general position and another half of a 1,3-phenylenedimethanaminium dication located on a twofold axis (see the left part of the Figure). Consequently, there are three bromide counter anions in the asymmetric unit, which are all in general positions. Thus, the Z′ parameter [19] is 1.5, a finding which is not uncommon in chemical crystallography [20], [21], [22]. The same situation has been reported for the directly structurally related 1,3-phenylenedimethanaminium dichloride [12]. Bond lengths and angles in the cation are in the range of expectations [12], [13], [14], [15], [16], [17], [18]. The 1,3-phenylenedimethanaminium cations in the title structure use their conformational flexibility by a rotation about the C1–C2, C6–C8 and C9–C10 single bonds, respectively (left part of the Figure). A dihedral angle of −172.4(6)° for the atoms N1, C2, C8, N2 in this structure leads to the wellknown [16] double hook shape of the 1,3-phenylenedimethanaminium dication. The 1,3-phenylenedimethanaminium cation located on the twofold axis shows a significantly different conformation (N3–C9–C9′–N3′ = −136.9(8); ′ = −x + 1/2, y, −z + 1).

Cations and anions are connected via NH⃛Br hydrogen bonds (see the Figure). Each –NH3 group donates at least three hydrogen bonds and each bromide anion accepts at least three of them. All Br⃛H distances are significantly below the typical van der Waals distances [23]. These hydrogen bonds construct a 2D-network in the ab plane. In this network three different ring types (right part of the Figure) can be assigned {graph set descriptors [24]: A: R8416; B and B′: R42(8), C: R32(6)}.

The title structure shows the ability of semiflexible organic cations to support the formation of an ordered crystalline material by its conformational adjustments to form a maximum of hydrogen bonds.


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North–Rhine Westphalia and the German Research Foundation (DFG)

Award Identifier / Grant number: INST 208/533–1, 162659349

Funding source: Heinrich–Heine–Universität Düsseldorf

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Ministry of Innovation, Science and Research of North–Rhine Westphalia and the German Research Foundation – DFG (Xcalibur diffractometer; INST 208/533–1, project no. 162659349). Finally, funding by the open access fund of the Heinrich–Heine–Universität Düsseldorf is also gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brandenburg, K. diamond. Visual Crystal Structure Information System. Ver. 4.5.2; Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar

2. Oxford Diffraction. CrysAlisPRO. (version 1.171.33.42); Oxford Diffraction Ltd.: Oxford, UK, 2009.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar

5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar

6. Megen van, M., Reiss, G. J. I62− Anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 2013, 1, 3–13; https://doi.org/10.3390/inorganics1010003.Search in Google Scholar

7. Reiss, G. J., van Megen, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. 2012, B67, 5–10; https://doi.org/10.1515/znb-2012-0102.Search in Google Scholar

8. Reiss, G. J., Engel, J. S. Hydrogen bonded 1,10-diammoniodecane - an example of an organo-template for the crystal engineering of polymeric polyiodides. CrystEngComm 2002, 4, 155–161; https://doi.org/10.1039/B203499A.Search in Google Scholar

9. van Megen, M., Jablonka, A., Reiss, G. J. Synthesis, structure and thermal decomposition of a new iodine inclusion compound in the 2,2-dimethylpropane-1,3-diamine/HI/I2 system. Z. Naturforsch. 2014, B69, 753–760; https://doi.org/10.5560/znb.2014-4088.Search in Google Scholar

10. Visi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I., Schubert, D. M. Structures of self-assembled nonmetal borates derived from α,ω-diaminoalkanes. Cryst. Growth Des. 2006, 6, 538–545; https://doi.org/10.1021/cg0504915.Search in Google Scholar

11. Dobrzycki, L., Woźniak, K. 1D vs 2D crystal architecture of hybrid inorganic-organic structures with benzidine dication. J. Mol. Struct. 2009, 921, 18–33; https://doi.org/10.1016/j.molstruc.2008.12.027.Search in Google Scholar

12. Cheng, H., Li, H. (m–Phenylenedimethylene)diammonium dichloride. Acta Crystallogr. 2008, E64, o2060; https://doi.org/10.1107/S1600536808031334.Search in Google Scholar

13. Guesmi, A., Roisnel, T., Marouani, H. Featuring non-covalent interactions in m-xylylenediaminium bis(perchlorate) monohydrate: synthesis, characterization and Hirshfeld surface analysis. J. Mol. Struct. 2019, 1194, 66–72; https://doi.org/10.1016/j.molstruc.2019.04.124.Search in Google Scholar

14. Guesmi, A., Gatfaoui, S., Roisnel, T., Marouani, H. m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. 2016, E72, 776–779; https://doi.org/10.1107/s2056989016006940.Search in Google Scholar

15. Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M., Marouani, H. m-Xylylenediaminium dinitrate. Acta Crystallogr. 2014, E70, o398–o399; https://doi.org/10.1107/s1600536814004620.Search in Google Scholar

16. Reiss, G. J. Crystal structure of bis(1,3-phenylenedimethanaminium) bis(triiodide) tetraiodide - water (1/2), C8H16I5N2O. Z. Kristallogr. NCS 2020, 235, 1047–1050; https://doi.org/10.1515/ncrs-2020-0164.Search in Google Scholar

17. Su, B., Song, G., Molokeev, M. S., Lin, Z., Xia, Z. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 59, 9962–9968; https://doi.org/10.1021/acs.inorgchem.0c01103.Search in Google Scholar

18. Jomaa, I., Noureddine, O., Gatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. Experimental, computational, and in silico analysis of (C8H14N2)2[CdCl6] compound. J. Mol. Struct. 2020, 1213, 128186; https://doi.org/10.1016/j.molstruc.2020.128186.Search in Google Scholar

19. Steed, K. M., Steed, J. W. Packing Problems: high Z′ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem. Rev. 2015, 115, 2895–2933; https://doi.org/10.1021/cr500564z.Search in Google Scholar

20. Todd, A. M., Anderson, K. M., Byrne, P., Goeta, A. E., Steed, J. W. Helical or polar guest-dependent Z′ = 1.5 or Z′ = 2 forms of a sterically hindered bis(urea) clathrate. Cryst. Growth Des. 2006, 6, 1750–1752; https://doi.org/10.1021/cg060318o.Search in Google Scholar

21. Kirsop, P., Storey, J. M. D., Harrison, W. T. A. 2–Bromo-1,3-bis(bromomethyl)benzene, with Z′ = 1.5: whole-molecule disorder of one of the two independent molecules. Acta Crystallogr. 2006, C62, o376–o378; https://doi.org/10.1107/S0108270106017707.Search in Google Scholar

22. Lo Presti, L., Soave, R., Longhi, M., Ortoleva, E. Conformational polymorphism in a Schiff-base macrocyclic organic ligand: an experimental and theoretical study. Acta Crystallogr. 2010, B66, 527–543; https://doi.org/10.1107/s0108768110029514.Search in Google Scholar

23. Hu, S.-Z., Zhou, Z.-H., Xie, Z.-X., Robertson, B. E. A comparative study of crystallographic van der Waals radii. Z. Kristallogr. CM 2014, 229, 517–523; https://doi.org/10.1515/zkri-2014-1726.Search in Google Scholar

24. Grell, J., Bernstein, J., Tinhofer, G. Investigation of hydrogen bond patterns. A review of mathematical tools for the graph set approach. Crystallogr. Rev. 2002, 8, 1–56; https://doi.org/10.1080/08893110211936.Search in Google Scholar

Received: 2020-12-02
Accepted: 2020-12-30
Published Online: 2021-01-18
Published in Print: 2021-05-26

© 2020 Niklas Brandt and Guido J. Reiss, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxidoethylidene)benzohydrazonato-κ5N,O,O′:N′,O′′)hexkis(pyridine-κ1N)trinickel(II) - pyridine (1/1), C63H57Cl2N13Ni3O6
  4. Crystal structure of [(μ2-succinato κ3O,O′:O′′)-bis-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)]dinickel(II)] diperchlorate, dihydrate C36H82Cl2N8Ni2O15
  5. Crystal structure of catena-poly[aquabis(3-nitrobenzoato-κ2O:O′)-(μ2-pyrazine-N: N′)cadmium(II)], C18H14N4O9Cd
  6. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione, C14H15F2NO2
  7. The crystal structure of thioxanthen-9-one-10,10-dioxide, C13H8O3S – a second polymorph
  8. Crystal structure of (E)-2-((2-methoxy-3-pyridyl)methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2
  9. The crystal structure of diaquahydrogen 2,5-dimethylbenzenesulphonate, C8H14O5S
  10. The crystal structure of N-(4-(cyclohexylimino)pent-2-en-2-yl)cyclohexanamine, C17H30N2
  11. The twinned crystal structure of 1,3-phenylenedimethanaminium dibromide, C8H14Br2N2
  12. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole – dimethyl sulfoxide (1/1), C16H11N5O10S
  13. Crystal structure of 2,6-bis(2-(pyridin-3-yl)ethyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone, C24H18N4O4
  14. The crystal structure of 3,4-dichlorobenzoic acid chloride, C7H3Cl3O
  15. Crystal structure of 1,1′-(1,4-phenylenebis(methylene))bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-k2S:S)zinc(II), C26H18N6ZnS4
  16. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10
  17. Crystal structure of 9-methyl-3-methylene-1,2,3,9-tetrahydro-4H-carbazol-4-one, C14H13NO
  18. Crystal structure of bis(amino(carbamothioylamino)methaniminium) 3-nitrophthalate monohydrate, C12H19N9O7S2
  19. Crystal structure of 3,3′-(1,2-phenylene-bis(methylene))bis(1-ethyl-1H-imidazol-3-ium) bis(hexafluorophosphate), C18H24F12N4P2
  20. The crystal structure of 5-hydroxy-6,8-dimethoxy-2-methyl-4H-benzo[g]chromen-4-one– rubrofusarin B, C16H14O5
  21. The crystal structure of bis(ethanol-kO)- bis(6-aminopicolinato-k2N,O)manganese(II), C16H22O6N4Mn
  22. The crystal structure of 3,3′-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8
  23. Crystal structure of dimethanol-dichlorido-bis( μ2-2-(((1,5-dimethyl-3-oxo-2- phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato- κ4O:O,O′,N)dinickel (II), C20H24ClNiN3O4
  24. The crystal structure of methyl 5-(trifluoromethyl)-1H-pyrrole-2-carboxylate, C7H6F3NO2
  25. Crystal structure of (OC‐6‐13)‐aqua‐tris (3‐bromopyridine‐κ1N)‐bis(trifluoroacetato‐κ1O)cadmium(II) C19H14Br3CdF6N3O5
  26. Crystal structure of methyl (E)-3-(4-(2-ethoxy-2-oxoethoxy)phenyl) acrylate, C14H16O5
  27. Crystal structure of methyl 4-acetoxy-3,5-dimethoxybenzoate, C12H14O6
  28. The crystal structure of 2-(1H-benzimidazol-2-yl)-3-bromo-5-chlorophenol, C13H8BrClN2O
  29. The crystal structure of bis(μ2-5-chloro-N-(2-methyl-1-oxidopropylidene)-2-oxidobenzohydrazonate-κ5N,O,O′:N′,O′′)pentakis(pyridine-κ1N)tricopper(II), C47H45Cl2N9Cu3O6
  30. Synthesis and crystal structure of catena-poly[aqua-bis(nitrato-κ2O:O′)- (μ2-((1 H-imidazol-1-yl)methyl)benzene-κ2 N,N′)-H2O-κ2O]cadmium(II), C14H16N6O7Cd
  31. The crystal structure of pentakis(carbonyl)-{μ-[2,3-bis(sulfanyl)propan-1-olato]}-(triphenylphosphane)diiron (FeFe)C26H21Fe2O6PS2
  32. Crystal structure of ethyl-2-(3-benzoylthioureido)propanoate, C13H16N2O3S
  33. Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O
  34. Crystal structure of 2,2′-[ethane-1,2-diylbis(azanylylidenemethylylidene)]bis(6-chlorophenol), C16H14Cl2N2O2
  35. The crystal structure of (Z)-3-((2-(2-(2-aminophenoxy)ethoxy)phenyl)amino)-1-phenylbut-2-en-1-one, C24H24N2O3
  36. The crystal structure of 10-(3,5-di(pyridin-4-yl)phenyl)-10H-phenoxazine dihydrate, C28H23N3O3
  37. Crystal structure of poly[dipoly[aqua-di(µ2-pyrazin-2-olato-κ2N:N′) zinc(II)], C8H8N4O3Zn
  38. Crystal structure of poly[tetra(μ2-cyanido-κ2N:O)-bis(N,N-dimethylformamide-κO)-manganese(II)-platinum(II)], C10H14MnN6O2Pt
  39. The crystal structure of aqua-chlorido-6,6′-((ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dichlorophenolato-κ4N,N′,O,O′)manganese(III), C16H12Cl5MnN2O3
  40. Crystal structure of [di(µ2-cyanido)-dicyanido-bis(dimethyl sulfoxide-κO)- bis(2,2′-(ethane-1,2-diylbis(azanylylidenemethanylylidene))diphenolato-κ4,N,N′,O,O′)- dimanganese(III)-platinum(II)], C40H40Mn2N8O6PtS2
  41. The crystal structure of (azido)-κ1N-6,6′-((cyclohexane-1,2-diylbis(azanylylidene)) bis(methanylylidene))bis(3-bromophenolato-κ4N,N,O,O)-(methanol)-manganese(III)–methanol(1/1), C22H26Br2MnN5O4
  42. Crystal structure of 7-chloro-N-(4-iodobenzyl)-1,2,3,4-tetrahydroacridin-9-amine, C20H18ClIN2
  43. Crystal structure of catena-poly[(1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N′′′)-bis(μ2-thiocyanato-κ2N:S)-bis(thiocyanato-κS)-nickel(II)palladium(II)], C14H24N8NiPdS4
  44. Crystal structure of 3-chloro-4-(4-ethylpiperazin-1-yl)aniline monohydrate, C12H20ClN3O
  45. Crystal structure of the 2D coordination polymer poly[diaqua-bis(μ2-3- methoxyisonicotinato-κ2N:O)cobalt(II)] — dimethylformamide (1/1), C20H30CoN4O10
  46. Crystal structure of 4-[(5-chloro-2-hydroxybenzylidene)amino]-3-propyl-1H-1,2,4-triazole-5(4H)-thione, C12H13ClN4OS
  47. Crystal structure of N-(5-(2-(benzyl(1-(4-methoxyphenyl)propan-2-yl)amino)-1-hydroxyethyl)-2-(benzyloxy)phenyl)formamide, C33H36N2O4
  48. Crystal structure of 3-(methoxycarbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C9H12O5
  49. The crystal structure of 1-((dimethylamino)(3-nitrophenyl)methyl)naphthalen-2-ol, C19H18N2O3
  50. Crystal structure of catena-poly[di(μ2-cyanido-κ2C:N)-dicyanido-tetrakis(dimethyl sulfoxide-κO)-manganese(II)-platinum(II)], C12H24MnN4O4PtS4
  51. Crystal structure of 4-amino-N-(2-pyrimidinyl)benzenesulfonamide–1,4-dioxane (1/1), C14H18N4O4S
  52. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-(2-methyl-imidazol)}di-chloridomercury(II), [Hg(C11H11N5)2Cl2], C22H22N10Cl2Hg
  53. Crystal structure of 2, 3-bis((4-methylbenzoyl)oxy) succinic acid–N, N-dimethylformamide (1/1), C23H25NO9
  54. Crystal structure of catena-poly[bis(4-(4-carboxyphenoxy)benzoato-κ1O)-μ2-(1,4-bis(1-imidazolyl)benzene-κ2N:N′)cobalt(II)], C40H28N4O10Co
  55. Crystal structure of 1H-imidazol-3-ium poly[aqua-(μ4-glutarato-κ6O,O′:O′:O′′,O′′′:O′′′)-(nitrato-κ2O,O′)strontium(II)], C8H13N3O8Sr
  56. Crystal structure of (R)-6-(benzo[b]thiophen-5-yl)-2-methyl-2,6-dihydrobenzo [5,6] silino[4,3,2-cd]indole, C23H17NSSi
  57. Crystal structure of catena-poly[bis(μ2-thiocyanato-κ2N:S)-(2-(5-methyl-1H-pyrazol-3-yl)pyridine-κ2N,N′)cadmium(II)]–dioxane (1/1), C15H17CdN5O2S2
  58. Crystal structure of poly[aqua-(μ2-1,4-bis(2′-carboxylatophenoxy)benzene-κ2O:O′)-(μ2-4,4′-bipyridione-κ2N:N′)cadmium(II)] monhydrate, C30H22CdN2O7⋅H2O
  59. Crystal structure of catena-poly[tetraaqua-(μ2-4,4′-bipyridine-k2N:N′)-bis(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-k4O,O′:O″,O′″)dicadmium(II)] dihydrate, C20H20NO7Cd
  60. Crystal structure of 1‐tert‐butyl‐3‐(2,6‐diisopropyl‐4‐phenoxyphenyl)‐2-methylisothiourea, C24H34N2OS
  61. Crystal structure of catena-poly[triaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-(4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ1O)cobalt(II)] — N,N′-dimethylformamide (1/1), C28H34N8O8Co
  62. Crystal structure of tetraaqua-bis(1,4-di(1H-imidazol-1-yl)benzene-κ1N)manganese(II) 2,3-dihydroxyterephthalate, C32H32MnN8O10
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0618/html
Scroll to top button