Home Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
Article
Licensed
Unlicensed Requires Authentication

Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys

  • Imre Bakonyi EMAIL logo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, the basic principles of and some recent advances in rapid solidification are briefly considered, with main emphasis on the formation of single-phase metastable states during meltquenching in Ni-rich Zr –Ni and Hf–Ni alloys. Factors controlling nanocrystalline-forming ability are discussed in detail, with particular view on the preparation of single-phase nanocrystalline alloys by the melt-quenching process.


Dr. Imre Bakonyi Research Institute for Solid State Physics and Optics Hungarian Academy of Sciences H-1525 Budapest, P.O.B. 49, Hungary Tel.: +36 1 392 2628 Fax: +36 1 392 2215

Dedicated to Prof. Dr. Ferdinand Sommer on the occasion of his 65th birthday


References

[1] W. Klement, Jr., R.H. Willens, P. Duwez: Nature 187 (1960) 869; P. Duwez, R.H. Willens, W. Klement, Jr.: J. Appl. Phys. 31 (1136) 1960.10.1038/187869b0Search in Google Scholar

[2] T. Egami, W.L. Johnson, in: M.A. Otooni (Ed.), Elements of Rapid Solidification. Springer Series in Materials Science (1998), Vol. 29, pp. 1–21.10.1007/978-3-642-45755-5_1Search in Google Scholar

[3] W. Klement, Jr.: Can. J. Phys. 40 (1962) 1397; W. Klement, Jr.: Trans. Met. Soc. AIME 227 (1963) 965.10.1139/p62-147Search in Google Scholar

[4] Z. Altounian, E. Batalla, J.O. Ström-Olsen: J. Appl. Phys. 59 (1986) 2364.10.1063/1.336335Search in Google Scholar

[5] Á. Cziráki, B. Fogarassy, G. Van Tendeloo, P. Lamparter, M. Tegze, I. Bakonyi: J. All. Comp. 210 (1994) 135.10.1016/0925-8388(94)90128-7Search in Google Scholar

[6] I. Bakonyi, F. Mehner, M. Rapp, Á. Cziráki, H. Kronmüller, R. Kirchheim: Z. Metallkd. 86 (1995) 619.10.1515/ijmr-1995-860907Search in Google Scholar

[7] J.-Z. Yu. A.-P. Tsai, T. Masumoto (Eds.): Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, in: Landolt-Börnstein, New Series, Vol. III.37/A, Springer-Verlag, Berlin, Germany (1997).Search in Google Scholar

[8] A. Inoue, T. Zhang: J. Non-Cryst. Sol. 250 (1999) 552.10.1016/S0022-3093(99)00128-3Search in Google Scholar

[9] H. Gleiter: Progr. Mater. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar

[10] R.W. Siegel, Mater. Sci. Eng. A 168 (1993) 189.10.1016/0921-5093(93)90726-USearch in Google Scholar

[11] K. Lu: Mater. Sci. Eng. R 16 (1997) 161.10.1016/0927-796X(95)00187-5Search in Google Scholar

[12] I. Bakonyi, Á. Cziráki: Nanostruct. Mater. 11 (1999) 9.10.1016/S0965-9773(98)00156-1Search in Google Scholar

[13] K. Lu, Z.F. Dong, I. Bakonyi, Á. Cziráki: Acta Metall. Mater. 43 (1995) 2641.10.1016/0956-7151(94)00478-ZSearch in Google Scholar

[14] Z.F. Dong, K. Lu, R. Lück, I. Bakonyi, Z.Q. Hu: Nanostruct. Mater. 11 (1999) 187.10.1016/S0965-9773(99)00031-8Search in Google Scholar

[15] R. Lück, Z.F. Dong, M. Scheffer, I. Bakonyi, K. Lu: Philos. Mag. B 79 (1999) 163.10.1080/13642819908206791Search in Google Scholar

[16] F. Sommer, T. Tarnóczi, K. Russew, Á. Cziráki, L.F. Kiss, L.K. Varga, I. Bakonyi: Z. Metallkd. 89 (1998) 256.Search in Google Scholar

[17] Á. Cziráki, I. Gero˝cs, B. Fogarassy, G. Van Tendeloo, F. Sommer, I. Bakonyi: Int. J. Non-Equilibr. Proc. 10 (1998) 265.Search in Google Scholar

[18] G. Ghosh, F.R. Chen, M. Chandrasekaran, L. Delaey: Mater. Sci. Eng. A 133 (1991) 468.10.1016/0921-5093(91)90112-ZSearch in Google Scholar

[19] G. Ghosh: Mater. Sci. Eng. A 189 (1994) 277.10.1016/0921-5093(94)90425-1Search in Google Scholar

[20] M. Chandrasekaran, G. Ghosh, D. Schryvers, M. de Graef, L. Delaey, G. Van Tendeloo: Phil. Mag. A 75 (1997) 677.10.1080/01418619708207196Search in Google Scholar

[21] Z. Altounian, Tu Guo-Hoa, J.O. Ström-Olsen: J. Appl. Phys. 54 (1983) 3111.10.1063/1.332465Search in Google Scholar

[22] H. Hahn, R.S. Averback, S.J. Rothman: Phys. Rev. B 33 (1986) 8825.10.1103/PhysRevB.33.8825Search in Google Scholar

[23] I. Bakonyi: Acta Mater. 53 (2005) 2509.10.1016/j.actamat.2005.02.016Search in Google Scholar

[24] K. Yamauchi, Y. Yoshizawa: Nanostruct. Mater. 6 (1995) 247.10.1016/0965-9773(95)00048-8Search in Google Scholar

[25] T.B. Massalski (Ed.): Binary Alloy Phase Diagrams, Second Edition Plus Updates on CD-ROM, ASM International, Materials Park, Ohio, U.S.A. (1996).Search in Google Scholar

[26] Á. Révész, Á. Cziráki, A. Lovas, J. Pádár, J. Lendvai, I. Bakonyi: Z. Metallkd. 96 (2005) 974.10.3139/146.101114Search in Google Scholar

Received: 2005-11-15
Accepted: 2005-12-15
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  4. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  5. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  6. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  7. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  8. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  9. An indirect approach to measure glass transition temperature in metallic glasses
  10. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  11. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  12. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  13. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  14. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  15. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  16. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  17. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  18. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  19. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  20. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  21. Low temperature deposition with inductively coupled plasma
  22. Instructions for Authors
  23. Personal/Personelles
  24. Press/Presse
  25. Conferences/Konferenzen
  26. Frontmatter
  27. Editorial
  28. Editorial
  29. BBasic
  30. Evolution of the mixed-mode character of solid-state phase transformations in metals involving solute partitioning
  31. Liquid–liquid interfacial tension in themonotectic alloy (Al34.5Bi65.5)95Si5 (wt.%)
  32. Influence of Sb additions on surface tension and density of Sn–Sb, Sn–Ag–Sb and Sn–Ag–Cu–Sb alloys: Experiment vs. modeling
  33. Liquid–liquid transition in elemental liquids investigated by sound velocity measurements: trends in the periodic table
  34. Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys
  35. Structure-induced order – disorder transformation in Cd – Na liquid alloys
  36. An indirect approach to measure glass transition temperature in metallic glasses
  37. Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems
  38. Development of long-period ordered structures during crystallisation of amorphous Mg80Cu10Y10 and Mg83Ni9Y8
  39. Isothermal crystallization behavior of undercooled liquid Pd40Cu30Ni10P20 in terms of crystal growth, overall volume crystallization kinetics and their relation to the viscosity temperature dependence
  40. The magnesium-ytterbium system: A contribution to the thermodynamics of solid alloys
  41. Experimental investigation and thermodynamic modelling of the Mg–Al-rich region of the Mg–Al–Sr System
  42. Thermodynamic properties and phase relations of Zn-rich alloys in the system Pt–Zn
  43. Comparison of thermodynamic data of the ternary Cu–Sn–Zn system, measured with the EMF and with the calorimetric method
  44. Analysis of phase formation in Ni-rich alloys of the Ni–Ta–W system by calorimetry, DTA, SEM, and TEM
  45. Site preference, thermodynamic, and magnetic properties of the ternary Laves phase Ti(Fe1 – xAlx)2 with the crystal structure of the MgZn2-type
  46. Activity measurements on the Al-rich region of the Ni–Al system – A high temperature mass spectrometric study
  47. Metastable phases and nanocrystalline-forming ability (NFA) of melt-quenched Ni-rich (Zr, Hf)–Ni alloys
  48. AApplied
  49. Low temperature deposition with inductively coupled plasma
  50. Notifications/Mitteilungen
  51. Instructions for Authors
  52. Personal/Personelles
  53. Press/Presse
  54. Conferences/Konferenzen
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0076/html
Scroll to top button