Home On the creep resistance in cast Ni-base superalloys
Article
Licensed
Unlicensed Requires Authentication

On the creep resistance in cast Ni-base superalloys

  • C. Yuan EMAIL logo and J. T. Guo
Published/Copyright: January 7, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we attempt to apply the modified hardening theory to estimate the creep resistance, which is considered as a key factor for controlling the creep deformation mechanism in cast nickel-base superalloys. It is suggested that, when the applied stress is high enough for the dislocations to cut into the γ′ particles, the creep resistance is almost a constant and independent of applied stress. At low applied stress, creep deformation is mainly controlled by dislocations climb, where the creep resistance has two components of a threshold stress and a friction stress. The model is verified for two cast nickel-base superalloys DZ17G and IN738. The results of detailed calculations are in good agreement with the experimental data.


Dr. Yuan Chao Institute of Metals Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016, P.R. China Tel.: +86 24 2397 1930 Fax: +86 24 8397 8045

References

[1] E.W. Ross, C.T. Sims, in: C.T. Sims, N.S. Stoloff, W.C. Hagel (Eds.), Superalloys II, John Wiley & Sons, New York (1987) 97.Search in Google Scholar

[2] W. Betteridge, S.W.K. Shaw: Mater. Sci. Technol. 3 (1987) 682.10.1179/mst.1987.3.9.682Search in Google Scholar

[3] B.B. Seth, in: T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra (Eds.), Superalloys 2000, TMS, Warrendale, PA ( 2000) 3.10.7449/2000/Superalloys_2000_3_16Search in Google Scholar

[4] E.H. Miller,W.L. Chambers, in: C.T. Sims, N.S. Stoloff,W.C. Hagel (Eds.), Superalloys II, John Wiley & Sons, New York (1987) 27.Search in Google Scholar

[5] F.R.N. Nabarro, H.L. de Villiers: The Physics of Creep, Taylor & Francis, London (1995).Search in Google Scholar

[6] R.A. Stevens, P.E.J. Flewitt: Mater. Sci. Eng. A 37 (1979) 237.10.1016/0025-5416(79)90157-5Search in Google Scholar

[7] B. Reppich, in: H. Mughrabi (Ed.), Plastic Deformation and Fracture of Materials, VCH, Weinheim (1993).Search in Google Scholar

[8] J. Weertman, J.R. Weertman, in: S.L. Anderson (Ed.), Constitutive Relations and Their Physical Basis, Risø National Lab., Denmark (1987) 191.Search in Google Scholar

[9] W. Blum: Z. Metallkd. 68 (1977) 484.10.1515/ijmr-1977-680704Search in Google Scholar

[10] J. Čadek: Creep in Metallic Materials, Elsevier, Amsterdam (1988).Search in Google Scholar

[11] J.P. Dennison, P.D. Holmes, B. Wishire: Mater. Sci. Eng. 33 (1978) 35.10.1016/0025-5416(78)90151-9Search in Google Scholar

[12] J.C. Gibeling, D. Nix: Mater. Sci. Eng. 45 (1980) 123.10.1016/0025-5416(80)90218-9Search in Google Scholar

[13] R.A. Stevens, P.E.J. Flewitt: Acta Metall. 29 (1981) 867.10.1016/0001-6160(81)90129-2Search in Google Scholar

[14] M. McLean: Acta Metall. 33 (1985) 545.10.1016/0001-6160(85)90018-5Search in Google Scholar

[15] R.W. Evans, B. Wilshire: Creep of Metals and Alloys, The Institute of Metals, London (1985).Search in Google Scholar

[16] G.C. Davies, D.R.H. Jones: Scripta Metall. 35 (1996) 523.10.1016/1359-6462(96)00165-0Search in Google Scholar

[17] L.M. Brown, R.K. Ham, in: A. Kelly, R.B. Nicholson (Eds.), Strengthening Methods in Crystals, Applied Science, London (1971) 9.Search in Google Scholar

[18] E. Nembach, G. Neite: Prog. Mater. Sci. 29 (1985) 177.10.1016/0079-6425(85)90001-5Search in Google Scholar

[19] A.J. Ardell: Metall. Trans. A 16 (1985) 2131.10.1007/BF02670416Search in Google Scholar

[20] R.B. Schwarz, R. Labusch: J. Appl. Phys. 49 (1978) 5174.10.1063/1.324413Search in Google Scholar

[21] B. Reppich: Acta Metall. 30 (1982) 87.10.1016/0001-6160(82)90048-7Search in Google Scholar

[22] B. Reppich, P. Schepp, G. Wehner: Acta Metall. 30 (1982) 95.10.1016/0001-6160(82)90049-9Search in Google Scholar

[23] B. Reppich, W. Kühlein, G. Merer, D. Puppel, M. Schulz, G. Schumann: Mater. Sci. Eng. 83 (1986) 45.10.1016/0025-5416(86)90173-4Search in Google Scholar

[24] S. Schanzer, E. Nembach: Acta Metall. Mater. 40 (1992) 803.10.1016/0956-7151(92)90022-7Search in Google Scholar

[25] C. Yuan, J.T. Guo, H.C. Yang, S.H. Wang: Scripta Mater. 39 (1998) 991.10.1016/S1359-6462(98)00255-3Search in Google Scholar

[26] J.T. Guo, C. Yuan, H.C. Yang, V. Lupinc, M. Maldini: Metall. Mater. Trans. A 32 (2001) 1103.10.1007/s11661-001-0121-ySearch in Google Scholar

[27] P.J. Henderson, M. McLean: Acta Metall. 31 (1983) 1203.10.1016/0001-6160(83)90182-7Search in Google Scholar

[28] J. Guo, D. Ranucci, E. Picco, P.M. Strocchi: Metall. Trans. A 14 (1983) 2329.10.1007/BF02663308Search in Google Scholar

[29] T.M. Pollock, A.S. Argon: Acta Metall. 40 (1992) 1.10.1016/0956-7151(92)90195-KSearch in Google Scholar

[30] M. Feller-Kniepmeier, G. Scheunemann-Frerker: Phil. Mag. A 62 (1990) 77.10.1080/01418619008244336Search in Google Scholar

[31] G. Eggeler, A. Dlouhy: Acta Mater. 45 (1997) 4251.10.1016/S1359-6454(97)00084-0Search in Google Scholar

[32] R. Srinivasan, G.F. Eggeler, M.J. Mills: Acta Mater. 48 (2000) 4867.10.1016/S1359-6454(00)00292-5Search in Google Scholar

[33] R.S.W. Shewfelt, L.M. Brown: Phil. Mag. 35 (1977) 945.10.1080/14786437708232636Search in Google Scholar

[34] D. Mukherji, R.P. Wahi: Acta Metall. 44 (1996) 1529.10.1016/1359-6454(95)00274-XSearch in Google Scholar

Received: 2005-07-20
Accepted: 2005-11-10
Published Online: 2022-01-07

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Phase separation in Si–(B)–C–N polymer-derived ceramics
  3. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  4. Thermodynamic assessment of the Mg–Nd system
  5. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  6. Phase diagram of the Co–Cu–Ti system at 850 °C
  7. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  8. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  9. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  10. On the creep resistance in cast Ni-base superalloys
  11. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  12. From waste to high strength alloy – recycling of magnesium chips
  13. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  14. Personal/Personelles
  15. Press / Presse
  16. Contents
  17. Articles Basic
  18. Phase separation in Si–(B)–C–N polymer-derived ceramics
  19. Solidification curves for commercial Mg alloys obtained from heat-transfer modeled DTA experiments
  20. Thermodynamic assessment of the Mg–Nd system
  21. Solid-state reaction in Ni/Si multilayered films, characterized by magneto-optical and optical spectroscopies
  22. Phase diagram of the Co–Cu–Ti system at 850 °C
  23. Effects of an electric field applied during the solution heat treatment of the Al–Mg –Si–Cu alloy AA6111 on the subsequent natural aging kinetics and tensile properties
  24. Articles Applied
  25. Fabrication and electrical sliding wear of graphitic Cu–Cr–Zr matrix composites
  26. Further results on creep behaviour of sand-cast Mg–2.8Nd–0.8Zn–0.5Zr–0.3Gd alloy at 0.56 to 0.61Tm under stresses 40 to 90 MPa
  27. On the creep resistance in cast Ni-base superalloys
  28. Formation, stability, and presence of magnesium nitride in magnesium recycling processes
  29. From waste to high strength alloy – recycling of magnesium chips
  30. Sigma phase formation and its effect on mechanical properties in the corrosion-resistant superalloy K44
  31. Notifications/Mitteilungen
  32. Personal/Personelles
  33. Press / Presse
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0028/html
Scroll to top button