Home Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases
Article
Licensed
Unlicensed Requires Authentication

Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases

  • Roberta Gabbianelli , Melania D’Orazio , Francesca Pacello , Peter O’Neill , Laura Nicolini , Giuseppe Rotilio and Andrea Battistoni
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 385 Issue 8

Abstract

Bacterial and eukaryotic Cu,Zn superoxide dismutases show remarkable differences in the active site region and in their quaternary structure organization. We report here a functional comparison between four Cu,Zn superoxide dismutases from Gram-negative bacteria and the eukaryotic bovine enzyme. Our data indicate that bacterial dimeric variants are characterized by catalytic rates higher than that of the bovine enzyme, probably due to the solvent accessibility of their active site. Prokaryotic Cu,Zn superoxide dismutases also show higher resistance to hydrogen peroxide inactivation and lower HCO3--dependent peroxidative activity. Moreover, unlike the eukaryotic enzyme, all bacterial variants are susceptible to inactivation by chelating agents and show variable sensitivity to proteolytic attack, with the E. coli monomeric enzyme showing higher rates of inactivation by EDTA and proteinase K. We suggest that differences between individual bacterial variants could be due to the influence of modifications at the dimer interface on the enzyme conformational flexibility.

:

Corresponding author e-mail:

References

Bannister, J.V., Bannister, W.H., and Rotilio, G. (1987). Aspects of the structure, function and application of superoxide dismutase. CRC Crit. Rev. Biochem.22, 111–180.10.3109/10409238709083738Search in Google Scholar

Battistoni, A. (2003). Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. Biochem. Soc. Trans.6, 1326–1329.10.1042/bst0311326Search in Google Scholar

Battistoni, A., Folcarelli, S., Cervone, L., Polizio, F., Desideri, A., Giartosio, A., and Rotilio, G. (1998a). Role of the dimericstructure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli. J. Biol. Chem.273, 5655–5661.10.1074/jbc.273.10.5655Search in Google Scholar

Battistoni, A., Donnarumma, G., Greco, R., Valenti, P., and Rotilio, G. (1998b). Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing. Biochem. Biophys. Res. Commun.243, 804–807.10.1006/bbrc.1998.8182Search in Google Scholar

Battistoni, A., Pacello, F., Mazzetti, A.P, Capo, C., Kroll, S.J., Langford, P., Sansone, A., Donnarumma, G., Valenti, P., and Rotilio, G. (2001). A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning. J. Biol. Chem.276, 30315–30325.10.1074/jbc.M010527200Search in Google Scholar

Berducci, G., Mazzetti, A.P., Rotilio, G., and Battistoni, A. (2004). Periplasmic competition for zinc uptake between the metallochaperone ZnuA and Cu,Zn superoxide dismutase. FEBS Lett.569, 289–292.10.1016/j.febslet.2004.06.008Search in Google Scholar

Borders Jr, C.L. and Fridovich, I. (1985). A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch. Biochem. Biophys.241, 472–476.Search in Google Scholar

Bordo, D., Pesce, A., Bolognesi, M., Stroppolo, ME., Falconi, M., and Desideri, A. (2001). Copper-zinc superoxide dismutase in prokaryotes and eukaryotes. In: Handbook of Metalloproteins, A. Messerschmidt, R. Huber, T. Poulos and K. Wieghardt, eds. (Chichester, UK: John Wiley & Sons, Ltd.) pp. 1284–1300.Search in Google Scholar

Bordo, D., Matak, D., Djinovic-Carugo, K., Rosano, C., Pesce, A., Bolognesi, M., Stroppolo, M.E., Falconi, M., Battistoni, A., and Desideri, A. (1999). Evolutionary constrains for dimer formation in prokaryotic Cu,Zn superoxide dismutase. J. Mol. Biol.285, 283–296Search in Google Scholar

Bourne, Y., Redford, S.M., Steinman, H.M., Lepock, J.R., Tainer, J.A., and Getzoff, E.D. (1996). Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.Proc. Natl. Acad. Sci. USA93, 12774–12779.10.1073/pnas.93.23.12774Search in Google Scholar

Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., Rotilio, G.,and Calabrese, L. (1974). Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J.139, 43–48.10.1042/bj1390043Search in Google Scholar

Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri A., Falconi, M., Marmocchi, F., Rotilio, G., and Bolognesi, M. (1992). Crystal structure of yeast Cu,Zn superoxide dismutase. Crystallographic refinement at 2.5 Å resolution. J. Mol. Biol.225, 791–809.10.1016/0022-2836(92)90401-5Search in Google Scholar

Djinovic Carugo, K., Battistoni, A., Carrì, M.T., Polticelli, F., Desideri, A., Rotilio, G., Wilson, K.S., and Bolognesi, M. (1996). Three-dimensional structure of Xenopus laevis Cu,Zn superoxide dismutase b determined by X-ray crystallography. Acta Cryst. D52, 176–188.Search in Google Scholar

D’Orazio, M., Battistoni, A., Stroppolo, M.E., and Desideri, A. (2000). Single mutation induces a metal-dependent subunit association in dimeric Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun.272, 81–83.10.1006/bbrc.2000.2730Search in Google Scholar PubMed

Falconi, M.,. Parrilli, L., Battistoni, A., and Desideri, A. (2002). Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation. Proteins47, 513–520.10.1002/prot.10094Search in Google Scholar

Folcarelli, S., Battistoni, A., Falconi, M., O’Neill, P., Rotilio, G., and Desideri, A. (1998). Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun.244, 908–911.10.1006/bbrc.1998.8364Search in Google Scholar

Gabbianelli, R., Signoretti, C., Marta, I., Battistoni, A., and Nicolini, I. (2004). Vibrio cholerae periplasmic superoxide dismutase: isolation of the gene and overexpression of the protein. J. Biotechnol.109, 123–130.10.1016/j.jbiotec.2004.01.002Search in Google Scholar

Hodgson, E.K., and Fridovich, I. (1975). The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry14, 5294–5299.10.1021/bi00695a010Search in Google Scholar

Huffman, D.L., and O’Halloran, T.V. (2001). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem.70, 677–701.10.1146/annurev.biochem.70.1.677Search in Google Scholar

Kitagawa, Y., Tanaka, N., Hata, Y., Kusonoki, M., Lee, G., Katsube, Y., Asada, K., Aibare, S., and Morita, Y. (1991). Three-dimensional structure of Cu,Zn Superoxide dismutase from spinach at 2.0 Å resolution. J. Biochem.109, 447–485.10.1093/oxfordjournals.jbchem.a123407Search in Google Scholar

Liochev, S.I., and Fridovich, I. (1999). On the role of bicarbonate in peroxidations catalyzed by Cu,Zn superoxide dismutase. Free Radic. Biol. Med.27, 1444–1447.10.1016/S0891-5849(99)00190-2Search in Google Scholar

Lowry, H.O., Rosebrough, N.J., Farr, L.A., and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem.193, 265–275.10.1016/S0021-9258(19)52451-6Search in Google Scholar

Marklund, S., and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem.47, 469–474.10.1111/j.1432-1033.1974.tb03714.xSearch in Google Scholar PubMed

Okado-Matsumoto, A., and Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem.276, 38388–38393.10.1074/jbc.M105395200Search in Google Scholar PubMed

O’Neill, P., Davies, S., Fielden, E.M., Calabrese, L., Capo, C., Marmocchi, F., Natoli, G., and Rotilio, G. (1988). The effects of pH and various salts upon the activity of a series of superoxide dismutase. Biochem. J.251, 41–46.10.1042/bj2510041Search in Google Scholar

Pacello, F., Kroll, S.J., Langford, P., Indiani, C., Smulevich, G.,Desideri, A., Rotilio, G., and Battistoni, A. (2001). A novel heme protein: the Cu,Zn superoxide dismutase from Haemophilus ducreyi. J. Biol. Chem.276, 30326–30334.10.1074/jbc.M010488200Search in Google Scholar

Parge, H.E., Hallewell, R.A., and Tainer, J.A. (1992) Atomic structures of wild type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA89, 6109–6113.10.1073/pnas.89.13.6109Search in Google Scholar

Pesce, A., Capasso, C., Battistoni, A., Folcarelli, S., Rotilio, G.,Desideri, A., and Bolognesi, M. (1997). Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli. J. Mol. Biol.274, 408–420.10.1006/jmbi.1997.1400Search in Google Scholar

Pesce, A., Battistoni, A., Stroppolo, M.E., Polizio, F., Nardini, M., Kroll, J.S., Langford, P.R., O’Neill, P., Sette, M., Desideri, A., and Bolognesi, M. (2000). Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene. J. Mol. Biol.302, 465–478.10.1006/jmbi.2000.4074Search in Google Scholar

Rotilio, G., Calabrese, L., and Coleman, J. (1973). Magnetic circular dichroism of cobalt-copper and zinc-copper bovine superoxide dismutase. J. Biol. Chem.248, 3853–3859.10.1016/S0021-9258(19)43813-1Search in Google Scholar

Stroppolo, M.E., Sette, M., O’Neill, P., Polizio, F., Cambria, M.T., and Desideri, A. (1998). Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Biochemistry37, 12287–12292.10.1021/bi980563bSearch in Google Scholar

Stroppolo, M.E., Pesce, A., Falconi, M., O’Neill, P., Bolognesi, M., and Desideri, A. (2000). Single mutation at the intersubunit interface confers extra efficiency to Cu,Zn superoxide dismutase. FEBS Lett.483, 17–20.10.1016/S0014-5793(00)01967-0Search in Google Scholar

Stroppolo, M.E., Pesce, A., D’Orazio, M., O’Neill, P., Bordo, D., Rosano, C., Milani, M. , Battistoni, A., Bolognesi, M., and Desideri, A. (2001). Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase. J. Mol. Biol.308, 555–563.10.1006/jmbi.2001.4606Search in Google Scholar PubMed

Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R., and Culotta, V.C. (2001). A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem.276, 38084–38089.10.1074/jbc.M105296200Search in Google Scholar PubMed

Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S., and Richardson D.C. (1982). Determination and analysis of the 2 Å structure of copper zinc superoxide dismutase. J. Mol. Biol.160, 287–303.10.1016/0022-2836(82)90174-7Search in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-08-01

© Walter de Gruyter

Downloaded on 29.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.091/html
Scroll to top button