Startseite Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites

  • Yanchun Zhou EMAIL logo und Wanli Gu
Veröffentlicht/Copyright: 20. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Chemical reactions and stability of Ti3SiC2 in Cu during processing of Cu/Ti3SiC2 composites in the temperature range of 900 – 1070 °C were investigated using X-ray diffraction and scanning electron microscopy. The results indicated that Cu reacted with Ti3SiC2 above 900 °C, and the reaction products were closely related to the reaction temperature and the relative ratio of Cu and Ti3SiC2. At low Ti3SiC2 content or temperatures below 1000 °C, Cu(Si) solid solution and TiCx were formed, whereas at high reaction temperature and high Ti3SiC2 content, Cu–Si intermetallic compounds like Cu5Si, Cu15Si4 and (Cu, Si) η' as well as TiCx were observed. The transporting process for the reaction was investigated and described. It was found that de-intercalation of Si from Ti3SiC2 dominated the reaction, which dissolved in copper to form Cu(Si) solid solution or Cu – Si intermetallic compounds such as Cu5Si, Cu15Si4 and (Cu, Si) η'. TiCx was always present as the decomposition product of Ti3SiC2.


Dr. Yanchun Zhou, Professor and Director of High-Performance Ceramic Division Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China, Tel.: +86 24 2397 1765, Fax: +86 24 2389 1320

Funding statement: This work was supported by the National Outstanding Young Scientist Foundation for Y. C. Zhou under Grant No. 59925208, Natural Sciences Foundation of China under Grant No. 50232040, No. 50072034, ‘863' project, and High-tech Bureau of the Chinese Academy of Sciences

References

[1] M.W. Barsoum, T. El-Raghy: J. Am. Ceram. Soc. 79 (1996) 1953.10.1111/j.1151-2916.1996.tb08018.xSuche in Google Scholar

[2] Y.C. Zhou, Z.M. Sun, J.H. Sun, Y. Zhang, J. Zhou: Z. Metallkd. 91 (2000) 329.Suche in Google Scholar

[3] S. Myhra, J.W.B. Summers, E.H. Kisi: Mater. Lett. 39 (1999) 6.10.1016/S0167-577X(98)00206-7Suche in Google Scholar

[4] A. Onodera, H. Hirano, T. Yuasa: Appl. Phys. Lett. 74 (1999) 3782.10.1063/1.124178Suche in Google Scholar

[5] M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, H. Wang, E.A. Payzant, C.R. Hubbard: J. Phys. Chem. Solids 60 (1999) 429.10.1016/S0022-3697(98)00313-8Suche in Google Scholar

[6] Z.M. Sun, Y.C. Zhou: Phys. Rev. B60(1999) 1441.10.1103/PhysRevB.60.1441Suche in Google Scholar

[7] Y.C. Zhou, Z.M. Sun, X.H. Wang, S.Q. Chen: Journal of Phys: Condens. Matter. 13 (2001) 10001.Suche in Google Scholar

[8] Y. Zhang, Z.M. Sun, Y.C. Zhou: Mater. Res. Innovat. 3 (1999) 80.10.1007/s100190050129Suche in Google Scholar

[9] Y. Zhang, Y.C. Zhou: Z. Metallkd. 91 (2000) 585.Suche in Google Scholar

[10] Z.M. Sun, Y.C. Zhou: Mater. Res. Innovat. 2 (1999) 227.10.1007/s100190050090Suche in Google Scholar

[11] C. Racault, F. Langlais, R. Naslain: J. Mater. Sci. 29 (1994) 3384.10.1007/BF00352037Suche in Google Scholar

[12] Y.C. Zhou, Z.M. Sun, B.H. Yu: Z. Metallkd. 91 (2000) 937.Suche in Google Scholar

[13] JCPDS card #32-1383.Suche in Google Scholar

[14] R.W. Olesinski, G.J. Abbaschian: Bull. Alloy Phase Diagrams 7 (1986) 170.10.1007/BF02881559Suche in Google Scholar

[15] Y.C. Zhou, Z.M. Sun: Mater. Res. Innovat. 3 (2000) 286.10.1007/PL00010876Suche in Google Scholar

[16] A.G.P. Andersen: Tr. A. I. M. M. E. 137(1940) 334.Suche in Google Scholar

Received: 2003-06-20
Accepted: 2003-10-07
Published Online: 2021-12-20

© 2004 Carl Hanser Verlag, München

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2004-0010/pdf
Button zum nach oben scrollen