Etchant for Normal and Abnormal Grain Growth Microstructure in RAFM Steel at Different Annealed Temperatures
-
M. Venkatesh
Abstract
To reveal the prior austenite grain (PAG) boundaries in Ferritic Martensitic steels with reduced activation by a peculiar etchant mixture of hydrochloric acid, nitric acid, and water has been developed. Etching with this system successfully delineates both, inside the grain and grain boundaries in RAFM steels at annealing temperatures 950–1250 °C and observed the abnormal grain growth at 1250 °C. Other two etchants Vilella's and Waterless Kalling's agents are uneffective at 1250 °C and do not reveal the abnormal grain growth. The specimens were austenitized at temperatures in the range 950–1250 °C. The suitable etching agent is successful to observe the micro structural features of RAFM steels.
Kurzfassung
Zur Sichtbarmachung ehemaliger Austenitkorngrenzen (PAGB, prior austenite grain boundaries) bei ferritisch-martensitischen Stählen mit niedriger Aktivierbarkeit wurde ein spezielles Ätzmittel, bestehend aus Salzsäure, Salpetersäure und Wasser, entwickelt. Durch die Verwendung dieses Ätzmittels lassen sich sowohl das Korninnere als auch die Korngrenzen in RAFM-Stählen, die bei Temperaturen von 950–1250 °C geglüht wurden, erfolgreich darstellen und unstetiges Kornwachstum bei 1250 °C nachweisen. Zwei weitere Ätzmittel – das Ätzmittel nach Vilella und das wasserfreie Ätzmittel nach Kalling – sind bei 1250 °C und damit zur Darstellung von unstetigem Kornwachstum unwirksam. Die Proben wurden bei Temperaturen im Bereich von 950–1250 °C austenitisiert. Mit einem geeigneten Ätzmittel können die mikrostrukturellen Merkmale bei RAFM-Stählen erfolgreich dargestellt werden.
References / Literatur
[1] Baldev, R.; Bhanu Sankara Rao, K.; Bhaduri, A. K.: Progress in the development of reduced activation ferritic-martensitic steels and fabrication technologies in India, Fusion Engineering and Design, 85 (2010) 7, 1460–146810.1016/j.fusengdes.2010.04.008Suche in Google Scholar
[2] Suri, A. K.; Krishnamurthy, N.; Batra, I. S.: Materials issues in fusion reactors, Journal of Physics: Conference Series, (2010) 1–1610.1088/1742-6596/208/1/012001Suche in Google Scholar
[3] MathewM. D.; Vanaja, J.; Laha, K.; Varaprasad Reddy, G.; Chandravathi, K. S.; Bhanu Sankara Rao, K.: Tensile and creep properties of reduced activation ferritic-martensitic steel for fusion energy application, Journal of Nuclear Materials417 (2011), 77–8010.1016/j.jnucmat.2011.01.058Suche in Google Scholar
[4] Baluc, N. et. al.: Hardening Mechanisms in Ferritic/Martensitic Steels, Effects of Radiation on Materials: 21st International Symposium, (2004), Martin L. Grossbeck, astm international 2004Suche in Google Scholar
[5] Baluc, N.: Materials for fusion power reactors, plasma physics and controlled fusion, 48 (2006) B165–B177 10.1088/0741-3335/48/12B/S16Suche in Google Scholar
[6] Baluc, N.; Schaublin, R.; Spatig, P.; Victoria, M.: On the Potentiality of using ferritic/martensitic steels as structural materials for fusion reactors, Nuclear Fusion Engineering.44 (2004) 1, 56–6110.1088/0029-5515/44/1/006Suche in Google Scholar
[7] Sunday, C.; Tolouei, O. R.; Mostavan, A.; Paternoster, C.; Turgeon, S.; Okorie, B. A.; Obikwelu, D. O.; Mantovani, D.: Effect of Grain Sizes on Mechanical Properties and Biodegradation Behavior of Pure Iron for Cardiovascular Stent Application, Biomatter, 6 (2015) 1, 1–910.4161/21592527.2014.959874Suche in Google Scholar
[8] Chandravathi, K. S.; et. al.: Response of Phase Transformation Inducing Heat Treatments on Microstructure and Mechanical Properties of Reduced Activation Ferritic-Martensitic Steels of Varying Tungsten Contents, metallurgical and materials transactions A45 (2014) 10, 4280–429210.1007/s11661-014-2406-ySuche in Google Scholar
[9] Vander Voort, G.: Metallography: principles and practice. New York: McGraw-Hill Book, 1984.322.10.31399/asm.tb.mpp.9781627082600Suche in Google Scholar
[10] Vander Voort, G.: Metallography: principles and practice. New York: McGraw-Hill Book, 1984. 219.10.31399/asm.tb.mpp.9781627082600Suche in Google Scholar
[11] Garcia de Andres, C.; Bartolomé, M. J.; Capdevila, C; San Martín, D; Caballero, F. G.; López, V.: Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels, Materials characterization46 (2001) 5, 389–39810.1016/S1044-5803(01)00142-5Suche in Google Scholar
[12] Garcia de Andres, C.; Caballero, G. C.; Capdevila, C; San Martín, D.: Revealing austenite grain boundaries by thermal etching: advantages and disadvantages, 49 (2003) 121–12710.1016/S1044-5803(03)00002-0Suche in Google Scholar
[13] Cho, K. S.; Caballero, F. G.; Capdevila, C; San Martín, D.: A novel etchant for revealing the prior austenite grain boundaries and matrix information in high alloy steels, materials characterization, 59 (2008) p 786 10.1016/j.matchar.2007.06.013Suche in Google Scholar
[14] Barraclough, D. R.: Etching of Prior Austenite Grain Boundaries in Martensite, Metallography6, (1973) 6, 465–47210.1016/0026-0800(73)90044-XSuche in Google Scholar
[15] Shirdel, M.; Mirzadeh, H.; Pars, M. H.: Abnormal grain growth in AISI 304L stainless steel materials Characterization97 (2014) 11–1710.1016/j.matchar.2014.08.022Suche in Google Scholar
[16] Liu, P.; Lu, F. G.; Liu, X.; Gao, Y. L.: Metallographic etching and microstructure characterization of NiCrMoV rotor steels for nuclear power, International Journal of Minerals, Metallurgy and Materials, 20 (2013) 12, 1164–1169. 10.1007/s12613-013-0850-0Suche in Google Scholar
[17] ASTM E112 – 12 standard test methods for determining average grain size ASM international (2013)Suche in Google Scholar
[18] Vander Voort, G.: Metallography, Principles and PracticeNew York: McGraw-Hill Book, (1984) 195–196.Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Etchant for Normal and Abnormal Grain Growth Microstructure in RAFM Steel at Different Annealed Temperatures
- The Effect of TiO2 Nanoparticle Adding on Inclusion and Microstructure
- Microstructure and Magnetic Properties of Polymer Bonded Magnets produced by Additive Manufacturing Technologies
- Liquid Metal Embrittlement during Hot Forming of Hot-Dip Galvanized Advanced High-Strength Unalloyed Steels (AHSS)
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Etchant for Normal and Abnormal Grain Growth Microstructure in RAFM Steel at Different Annealed Temperatures
- The Effect of TiO2 Nanoparticle Adding on Inclusion and Microstructure
- Microstructure and Magnetic Properties of Polymer Bonded Magnets produced by Additive Manufacturing Technologies
- Liquid Metal Embrittlement during Hot Forming of Hot-Dip Galvanized Advanced High-Strength Unalloyed Steels (AHSS)
- Meeting Diary/Veranstaltungskalender
- Meeting Diary