Startseite Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy

  • Funda Gül Koç , Mustafa Çöl und Tanju Çeliker
Veröffentlicht/Copyright: 26. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy was investigated. The influence of cooling rate on microstructure, hardness, electrical conductivity of 7075 aluminum alloy was investigated using a Jominy end quench test. Water at three different temperatures (20 °C, 50 °C, 75 °C) and polymer solutions of varied concentrations (5vol.-% and 25vol.-%) were used as a quenching medium. The changes of hardness, electrical conductivity and microstructure properties of the specimens with an increase in distance from the quenched surface were investigated comparatively for different quenching mediums. Tensile tests were applied to determine the effect of the quenching rate on mechanical properties of the specimens. Residual stress was measured using the ESPI hole drilling technique to understand the influence of cooling rate. The results show that the cooling rate decreases as the distance from the quenched surface, water temperature and polymer concentration increases. The changes in material properties such as hardness, electrical conductivity along the material profile decrease as water temperature and polymer concentration increase. Although the hardness and mechanical properties of the material decrease as the cooling rate decreases, the values obtained are convenient for conditions of industrial usage. Residual stress was significantly eliminated by quenching in hot water or polymer solution at a high concentration.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden die Auswirkungen der Abkühlgeschwindigkeit auf das Gefüge, die mechanischen Eigenschaften und die Eigenspannungen einer Aluminiumlegierung 7075 untersucht. Der Einfluss der Abkühlrate auf das Gefüge, die Härte und die elektrische Leitfähigkeit der Aluminiumlegierung 7075 wurden mittels des Jominy-Versuches ermittelt. Als Abschreckmedium wurde Wasser mit der Temperatur 20, 50 und 75 °C sowie Polymerlösungen mit einer Konzentration von 5 % und 25 % verwandt. Zusätzlich wurden Zugversuche durchgeführt, um den Einfluss der Abschreckgeschwindigkeit auf die mechanischen Eigenschaften der Proben zu bestimmen. Die Eigenspannungen wurden mit dem ESPI-Bohrlochverfahren ermittelt. Die Ergebnisse zeigen, dass die Abkühlgeschwindigkeit mit zunehmendem Abstand von der abgeschreckten Oberfläche abnimmt und wenn die Wassertemperatur und die Polymerkonzentration zunehmen. Die Veränderungen der Materialeigenschaften, wie der Härte, der elektrischen Leitfähigkeit entlang der Probenform nehmen mit zunehmender Wassertemperatur und Polymerkonzentration ebenfalls ab. Wenngleich die Härte und die mechanischen Eigenschaften mit abnehmender Abkühlgeschwindigkeit abnehmen, erwiesen sich die ermittelten Werte für die industrielle Anwendung als geeignet. Die Eigenspannungen nahmen signifikant beim Abkühlen in heißem Wasser und in der hochkonzentrierten Polymerlösung ab.


*Correspondence Address, Funda Gül Koç, Department of Metallurgical and Materials Engineering, Faculty of Engineering, Kocaeli University, 41380, Kocaeli, Turkey, E-mail:

M.Sc. Funda Gül Koç, born in 1986, graduated from the Kocaeli University, Turkey, Department of Metallurgical and Materials Engineering in 2008. She received her M.Sc. degree from the Kocaeli University, in the same department. She has been working as a research assistant at the Department of Metallurgical and Materials Engineering, Kocaeli University, Turkey since 2009.

Assoc. Prof. Dr. Mustafa Çöl, born in 1962, received his M.Sc. and PhD degrees at the RWTH Aachen University, Germany. He has been working at the Department of Metallurgical and Materials Engineering, Kocaeli University, Turkey since 1995.

Dr. Tanju Çeliker, born in 1963, received his M.Sc. and PhD degrees from the RWTH Aachen University, Germany. He has been working as General Manager at Onat Profile and Alloys Industry in Kocaeli, Turkey since 1998.


References

1 S.Cheng, K.Chen, G.Peng, X.Liang, X.Chen: Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy, T. Nonferr. Metal. Soc.22 (2012), pp. 475210.1016/S1003-6326(11)61138-2Suche in Google Scholar

2 Y.Sun, F.Jiang, H.Zhang, J.Su, W.Yuan: Residual stress relief in Al-Zn-Mg-Cu alloy by a new multistage interrupted artificial aging treatment, Mater. Design92 (2016), pp. 28128710.1016/j.matdes.2015.12.004Suche in Google Scholar

3 M.Tiryakioğlu, J. S.Robinson, P. D.Eason: On the quench sensitivity of 7010 aluminum alloy forging in the overaged condition, Mat. Sci. Eng. A-Struct.618 (2014), pp. 222810.1016/j.msea.2014.09.002Suche in Google Scholar

4 Y.Zhang, S.Yang, H.Ji: Microstructure evolution in cooling process of A-Zn-Mg-Cu alloy and kinetics description, T. Nonferr. Metal. Soc.22 (2012), pp. 2087209110.1016/S1003-6326(11)61432-5Suche in Google Scholar

5 J.Zhang, Y.Deng, W.Yang, S.Hu, X.Zhang: Design of multi-stage quenching process for 7050 aluminum alloy, Mater. Design56 (2014), pp. 33434410.1016/j.matdes.2013.09.029Suche in Google Scholar

6 Y.Zhang, B.Milkereit, O.Kessler, C.Schick, P. A.Rometsch: Developments of continuous cooling precipitation diagrams for aluminum alloys AA7150 and AA7020, J. Alloy. Compd.584 (2014), pp. 58158910.1016/j.jallcom.2013.09.014Suche in Google Scholar

7 W.Guo, J.Gou, J.Wang, M.Yang, H.Li, X.Wen, J.Zhang, Evolution of precipitate microstructure during stress aging of an Al-Zn-Mg-Cu alloy, Mat. Sci. Eng. A-Struct.634 (2015), pp. 16717510.1016/j.msea.2015.03.047Suche in Google Scholar

8 J.Thang, H.Chen, X.Zhang, S.Liu, W.Liu, H.Ouyang, H.Li: Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy, T. Nonferr. Metal. Soc.22 (2012), pp. 1255126310.1016/S1003-6326(11)61313-7Suche in Google Scholar

9 X.Zhang, W.Liu, S.Liu, M.Zhou, Effect of processing parameters on quench sensitivity of an AA7050 sheet, Mat. Sci. Eng. A-Struct.528 (2011), pp. 79580210.1016/j.msea.2010.07.033Suche in Google Scholar

10 X.Hou, P.Bai, Evaluation of strain fields caused by the ή phase in a Al-Zn-Mg-Cu alloy, Mat. Sci. Eng. A-Struct.683 (2017), pp. 909310.1016/j.msea.2016.10.065Suche in Google Scholar

11 P.Li, B.Xiong, Y.Zhang, Z.Li: Temperature variation and solution treatment of high strength AA7050, T. Nonferr. Metal. Soc.22 (2012), pp. 54655410.1016/S1003-6326(11)61212-0Suche in Google Scholar

12 A.Deschamps, Y.Brechet: Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy, Mat. Sci. Eng. A-Struct.251 (1998), pp. 20020710.1016/S0921-5093(98)00615-7Suche in Google Scholar

13 L.Lin, Z.Liu, S.Bai, P.Ying, X.Wang: Effect of germanium on quench sensitivity in Al-Zn-Mg-Zr alloy, Mater. Design, 86 (2015), pp. 67968510.1016/j.matdes.2015.07.169Suche in Google Scholar

14 S. D.Liu, X. M.Zhang, M. A.Chen, J. H.You: Influence of aging on quench sensitivity effect of 7055 aluminum alloy, Mater. Charact.59 (2008), pp. 536010.1016/j.matchar.2006.10.019Suche in Google Scholar

15 S.Liu, C.Li, Y.Deng, X.Zhang: Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy, Mater. Chem. Phys.167 (2015), pp. 32032910.1016/j.matchemphys.2015.10.051Suche in Google Scholar

16 Y.Zheng, C.Li, S.Liu, Y.Deng, X.Zhang, Effect of homogenization time on quench sensitivity of 7085 aluminum alloy, T. Nonferr. Metal. Soc.24 (2014), pp. 2275228110.1016/S1003-6326(14)63344-6Suche in Google Scholar

17 R. J.Flynn, J. S.Robinson: The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminum alloy, J. Mater. Process. Tech.153–154 (2004), pp. 67468010.1016/j.jmatprotec.2004.04.133Suche in Google Scholar

18 B.Nie, P.Liu, T.Zhou: Effect of composition on the quenching sensitivity of 7050 and 7085 alloys, Mat. Sci. Eng. A-Struct.667 (2016), pp. 10611410.1016/j.msea.2016.04.095Suche in Google Scholar

19 L.Lin, Z.Liu, S.Bai, Y.Zhou, W.Liu, Q.Lv: Effect of Ge and Ag addition on quench sensitivity and mechanical properties of an Al-Zn-Mg-Cu alloy, Mat. Sci. Eng. A-Struct.682 (2017), pp. 64064710.1016/j.msea.2016.11.092Suche in Google Scholar

20 J. S.Robinson, D. A.Tanner, C. E.Truman, A. M.Paradowska, R. C.Wimpory: The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075, Mater. Charact.65 (2012), pp. 738510.1016/j.matchar.2012.01.005Suche in Google Scholar

21 G. P.Dolan, J. S.Robinson: Residual stress reduction in 7175-T73, 6061-T6 and 2017 A-T4 aluminum alloys using quench factor analysis, J. Mater. Process. Tech.153–154 (2004), pp. 34635110.1016/j.jmatprotec.2004.04.065Suche in Google Scholar

22 Y. B.Dong, W. Z.Shao, L. X.Lu, J. T.Jiang, L.Zhen: Numerical simulation of residual stress in an Al-Cu alloy block during quenching and aging, J. Mater. Eng. Perform.24 (2015), pp. 4928494010.1007/s11665-015-1758-9Suche in Google Scholar

23 Y.Zhang, Y.Yi, S.Huang, F.Dong: Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forging, Mat. Sci. Eng. A-Struct.674 (2016), pp. 65866510.1016/jmsea.2016.08.017Suche in Google Scholar

24 Y.Deng, L.Wan, Y.Zhang, X.Zhang: Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys, J. Alloy. Compd.509 (2011), pp. 4636464210.1016/j.jallcom.2011.01.147Suche in Google Scholar

25 C.Li, S.Han, S.Liu, Y.Deng, X.Zhang: Grain structure effect on quench sensitivity of Al-Zn-Mg-Cu-Cr alloy, T. Nonferr. Metal. Soc.26 (2016), pp. 2276228210.1016/S1003-6326(16)64319-4Suche in Google Scholar

26 S. T.Lim, S. J.Yun, S. W.Nam: Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications, Mat. Sci. Eng. A-Struct.371 (2004), pp. 829010.1016/S0921-5093(03)00653-1Suche in Google Scholar

27 Y. C.Tzeng, C. T.Wu, S. L.Lee: The effect of Sc on the quench sensitivity of Al-7Si-0.6 Mg alloy, Mater. Lett.161 (2015), pp. 34034210.1016/j.matlet.2015.08.108Suche in Google Scholar

28 D. A.Tanner, J. S.Robinson: Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010 in the W-temper, J. Mater. Process. Tech., 153–154 (2004), pp. 998100410.1016/j.jmatprotec.2004.04.226Suche in Google Scholar

29 A.Deschamps, G.Texier, S.Ringeval, L. D.Durut: Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy, Mat. Sci. Eng. A-Struct.501 (2009), pp. 13313910.1016/j.msea.2008.09.067Suche in Google Scholar

30 P.Li, B.Xiong, Y.Zhang, Z.Li, B.Zhu, F.Wang, H.Liu: Quench sensitivity and microstructure character of high strength AA7050, T. Nonferr. Metal. Soc.22 (2012), pp. 26827410.1016/S1003-6326(11)61170-9Suche in Google Scholar

Published Online: 2018-09-26
Published in Print: 2018-10-27

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111242/html
Button zum nach oben scrollen