Startseite Lebenswissenschaften Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier

  • Roghaye Mahmoodi EMAIL logo , Toraj Mohammadi und Mansoor Moghadam
Veröffentlicht/Copyright: 9. Februar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The separation of Cd(II) and Ni(II) ions was studied in an aqueous sulphate medium using supported liquid membrane (SLM). D2EHPA/M2EHPA was used as a mobile carrier, microporous hydrophobic PTFE film was used as a solid support for the liquid membrane, and the strip phase was sulphuric acid. The effects of different parameters such as feed concentration, carrier concentration, feed phase pH, and strip phase pH on the separation factor and flux of Cd(II) and Ni(II) ions were studied. The optimum values obtained to achieve the maximum flux were 5.0 for feed pH, 40 vol. % for D2EHPA/M2EHPA concentration in the membrane phase, 0.5 for strip pH, and 0.012 mass % for feed concentration. Under these optimum conditions, the flux values of Cd(II) and Ni(II) were 15.7 × 10−7 kg m−2 s−1 and 2.6 × 10−7 kg m−2 s−1, respectively. The separation factors of Cd(II) over Ni(II) were studied under different experimental conditions. At a carrier concentration of 10 vol. % and feed concentration of 0.012 mass %, the maximum value of 185.1 was obtained for the separation factor of Cd(II) over Ni(II). After 24 h, the percentages of the extracted Cd(II) and Ni(II) were 83.3 % and 0.45 %, respectively.

[1] Alguacil, F. J., & Navarro, P. (2001). Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923. Hydrometallurgy, 61, 137–142. DOI: 10.1016/s0304-386x(01)00163-3. http://dx.doi.org/10.1016/S0304-386X(01)00163-310.1016/S0304-386X(01)00163-3Suche in Google Scholar

[2] Alguacil, F. J., & Alonso, M. (2005). Separation of zinc(II) from cobalt(II) solutions using supported liquid membrane with DP-8R (di(2-ethylhexyl) phosphoric acid) as a carrier. Separation and Purification Technology, 41, 179–184. DOI: 10.1016/j.seppur.2004.06.010. http://dx.doi.org/10.1016/j.seppur.2004.06.01010.1016/j.seppur.2004.06.010Suche in Google Scholar

[3] Dalali, N., Yavarizadeh, H., & Agrawal, Y. K. (2012). Separation of zinc and cadmium from nickel and cobalt by facilitated transport through bulk liquid membrane using trioctyl methyl ammonium chloride as carrier. Journal of Industrial and Engineering Chemistry, 18, 1001–1005. DOI: 10.1016/j.jiec.2011.11.151. http://dx.doi.org/10.1016/j.jiec.2011.11.15110.1016/j.jiec.2011.11.151Suche in Google Scholar

[4] Dżygiel, P., & Wieczorek, P. (2010). Supported liquid membranes and their modifications: Definition, classification, theory, stability, application and perspectives. In V. S. Kislik (Ed.), Liquid membranes: Principles and applications in chemical separations and wastewater treatment (chapter 3, pp. 76–80). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53218-3.00003-9. 10.1016/B978-0-444-53218-3.00003-9Suche in Google Scholar

[5] He, D. S., Luo, X. J., Yang, C. M., Ma, M., & Wan, Y. (2006). Study of transport and separation of Zn(II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier. Desalination, 194, 40–51, DOI:10.1016/j.desal.2005.10.024. http://dx.doi.org/10.1016/j.desal.2005.10.02410.1016/j.desal.2005.10.024Suche in Google Scholar

[6] Jafari, S., Yaftian, M. R., & Parinejad, M. (2009). Facilitated transport of cadmium as anionic iodo-complexes through bulk liquid membrane containing hexadecyltrimethylammonium bromide. Separation and Purification Technology, 70, 118–122. DOI: 10.1016/j.seppur.2009.09.003. http://dx.doi.org/10.1016/j.seppur.2009.09.00310.1016/j.seppur.2009.09.003Suche in Google Scholar

[7] Jha, M. K., Kumar, V., Jeong, J. K., & Lee, J. C. (2012). Review on solvent extraction of cadmium from various solutions. Hydrometallurgy, 111–112, 1–9. DOI: 10.1016/j.hydromet.2011.09.001. http://dx.doi.org/10.1016/j.hydromet.2011.09.00110.1016/j.hydromet.2011.09.001Suche in Google Scholar

[8] Juang, R. S., Kao, H. C., & Wu, W. H. (2004). Analysis of liquid membrane extraction of binary Zn(II) and Cd(II) from chloride media with Aliquat 336 based on thermodynamic equilibrium models. Journal of Membrane Science, 228, 169–177. DOI: 10.1016/j.memsci.2003.10.005. http://dx.doi.org/10.1016/j.memsci.2003.10.00510.1016/j.memsci.2003.10.005Suche in Google Scholar

[9] Kumbasar, R. A. (2010). Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2. Journal of Industrial and Engineering Chemistry, 16, 207–213. DOI: 10.1016/j.jiec.2009.08.002. http://dx.doi.org/10.1016/j.jiec.2009.08.00210.1016/j.jiec.2009.08.002Suche in Google Scholar

[10] Lv, J. W., Yang, Q., Jiang, J. W., & Chung, T. S. (2007). Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection. Chemical Engineering Science, 62, 6032–6039. DOI: 10.1016/j.ces.2007.06.013. http://dx.doi.org/10.1016/j.ces.2007.06.01310.1016/j.ces.2007.06.013Suche in Google Scholar

[11] Marták, J., Schlosser, Š., & Blahušiak, M. (2011). Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chemical Papers, 65, 608–619. DOI: 10.2478/s11696-011-0069-3. http://dx.doi.org/10.2478/s11696-011-0069-310.2478/s11696-011-0069-3Suche in Google Scholar

[12] Nogueira, C. A., & Delmas, F. (1999). New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction. Hydrometallurgy, 52, 267–287. DOI: 10.1016/s0304-386x(99)00026-2. http://dx.doi.org/10.1016/S0304-386X(99)00026-210.1016/S0304-386X(99)00026-2Suche in Google Scholar

[13] Parhi, P. K., Das, N. N., & Sarangi, K. (2009). Extraction of cadmium from dilute solution using supported liquid membrane. Journal of Hazardous Materials, 172, 773–779. DOI: 10.1016/j.jhazmat.2009.07.063. http://dx.doi.org/10.1016/j.jhazmat.2009.07.06310.1016/j.jhazmat.2009.07.063Suche in Google Scholar

[14] Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Keshavarz Alamdari, E. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3. http://dx.doi.org/10.2478/s11696-013-0310-310.2478/s11696-013-0310-3Suche in Google Scholar

[15] Ramachandra Reddy, B., Venkateswara Rao, S., & Neela Priya, D. (2008). Selective separation and recovery of divalent Cd and Ni from sulphate solutions with mixtures of TOPS 99 and Cyanex 471 X. Separation and Purification Technology, 59, 214–220. DOI: 10.1016/j.seppur.2007.06.006. http://dx.doi.org/10.1016/j.seppur.2007.06.00610.1016/j.seppur.2007.06.006Suche in Google Scholar

[16] Rathore, N. S., Leopold, A., Pabby, A. K., Fortuny, A., Coll, M. T., & Sastre, A. M. (2009). Extraction and permeation studies of Cd(II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane. Hydrometallurgy, 96, 81–87. DOI: 10.1016/j.hydromet.2008.08.009. http://dx.doi.org/10.1016/j.hydromet.2008.08.00910.1016/j.hydromet.2008.08.009Suche in Google Scholar

[17] Sarangi, K., Sarma, P. V. R. B., Das, S. C., & Misra, V. N. (2002). Separation/recovery of cadmium and nickel from industrial waste through supported liquid membrane using D2EHPA. In Y. V. Swamy, S. N. Das, K. M. Parida, & V. N. Misra (Eds.), Management of industrial effluents and wastes (pp. 101–106). Suche in Google Scholar

[18] Sarangi, K., & Das, R. P. (2004). Separation of copper and zinc by supported liquid membrane using TOPS-99 as mobile carrier. Hydrometallurgy, 71, 335–342. DOI: 10.1016/s0304-386x(03)00085-9. http://dx.doi.org/10.1016/S0304-386X(03)00085-910.1016/S0304-386X(03)00085-9Suche in Google Scholar

[19] Sürücü, A., Eyüpoglu, V., & Tutkun, O. (2010). Selective separation of cobalt and nickel by supported liquid membranes. Desalination, 250, 1155–1156. DOI: 10.1016/j.desal.2009.09.131. http://dx.doi.org/10.1016/j.desal.2009.09.13110.1016/j.desal.2009.09.131Suche in Google Scholar

[20] Surucu, A., Eyupoglu, V., & Tutkun, O. (2012). Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier. Journal of Industrial and Engineering Chemistry, 18, 629–634. DOI: 10.1016/j.jiec.2011.11.019. http://dx.doi.org/10.1016/j.jiec.2011.11.01910.1016/j.jiec.2011.11.019Suche in Google Scholar

[21] Swain, B., Sarangi, K., & Das, R. P. (2004). Separation of cadmium and zinc by supported liquid membrane using TOPS-99 as mobile carrier. Separation Science and Technology, 39, 2171–2188. DOI: 10.1081/ss-120039305. http://dx.doi.org/10.1081/SS-12003930510.1081/SS-120039305Suche in Google Scholar

[22] Swain, B., Sarangi, K., & Das, R. P. (2006). Effect of different anions on separation of cadmium and zinc by supported liquid membrane using TOPS-99 as mobile carrier. Journal of Membrane Science, 277, 240–248. DOI: 10.1016/j.memsci.2005.10.034. http://dx.doi.org/10.1016/j.memsci.2005.10.03410.1016/j.memsci.2005.10.034Suche in Google Scholar

[23] Swain, B., Jeong, J. K., Lee, J. C., & Lee, G. H. (2007). Separation of Co(II) and Li(I) by supported liquid membrane using Cyanex 272 as mobile carrier. Journal of Membrane Science, 297, 253–261. DOI: 10.1016/j.memsci.2007.03.051. http://dx.doi.org/10.1016/j.memsci.2007.03.05110.1016/j.memsci.2007.03.051Suche in Google Scholar

[24] Yang, X. J., Fane, A. G., & Soldenhoff, K. (2003). Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity. Industrial & Engineering Chemistry Research, 42, 392–403. DOI: 10.1021/ie011044z. http://dx.doi.org/10.1021/ie011044z10.1021/ie011044zSuche in Google Scholar

[25] Zhang, Y. L., Liu, P. H., Zhang, Q. Y., & Cheng, W. (2010). Separation of cadmium(II) from spent nickel/cadmium battery by emulsion liquid membrane. The Canadian Journal of Chemical Engineering, 88, 95–100. DOI: 10.1002/cjce.20251. http://dx.doi.org/10.1002/cjce.2024710.1002/cjce.20251Suche in Google Scholar

Published Online: 2014-2-9
Published in Print: 2014-6-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Rapid determination of fosetyl-aluminium in commercial pesticide formulations by high-performance liquid chromatography
  2. Immobilisation of acid pectinase on graphene oxide nanosheets
  3. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida
  4. Enzymatic synthesis of a chiral chalcogran intermediate
  5. Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier
  6. Fouling of nanofiltration membranes used for separation of fermented glycerol solutions
  7. Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate
  8. Cellulose-precipitated calcium carbonate composites and their effect on paper properties
  9. Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process
  10. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO
  11. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber
  12. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique
  13. Synthesis of new eburnamine-type alkaloid via direct hydroalkoxylation
  14. Selection of surfactants as main components of ecological wetting agent for effective extinguishing of forest and peat-bog fires
  15. Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik-Fields reaction
  16. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
  17. Determination of pK a of N-alkyl-N,N-dimethylamine-N-oxides using 1H NMR and 13C NMR spectroscopy
Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0506-6/html
Button zum nach oben scrollen