Startseite Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue

  • Ying Liu EMAIL logo , Xiang-Guang Meng , Jian-Mei Li , Xiao-Hong Li und Wei-Feng Yu
Veröffentlicht/Copyright: 28. Januar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phosphate esters play an important role in genetic information transfer, cell signal transduction, energy transmission and metabolic processes of living beings. Efficient catalytic hydrolysis of phosphate esters is still an attractive and challenging problem. Here, a new 2-amino-N-dodecyl-3-(1H-imidazol-5-yl)propanamide (L2) surfactant was synthesized and its metallomicelles of La3+, Cu2+, Co2+, and Zn2+ complexes were used as mimic metalloenzymes to catalyze the hydrolysis of glucose-1-phosphate (G1P) in a buffer solution at 35°C. The metallomicelle systems can efficiently catalyze the hydrolysis of G1P. The rare-earth metallomicelle LaL2 has the highest catalytic activity compared with those of the transition metal micelles CuL2, CoL2, and ZnL2. Different association behaviors of metallomicelles and substrate G1P were proposed. The imidazole group might accelerate the hydrolysis by activating H2O associated with the metal into a metal-OH− group. A possible catalytic mechanism was also discussed.

[1] Bauer-Siebenlist, B., Meyer, F., Farkas, E., Vidovic, D., & Dechert, S. (2005). Effect of Zn…pZn separation on the hydrolytic activity of model dizinc phosphodiesterases. Chemistry — A European Journal, 11, 4349–4360. DOI: 10.1002/chem.200400932. http://dx.doi.org/10.1002/chem.20040093210.1002/chem.200400932Suche in Google Scholar

[2] Bhattacharya, S., & Kumari, N. (2009). Metallomicelles as potent catalysts for the ester hydrolysis reactions in water. Coordination Chemistry Reviews, 253, 2133–2149. DOI: 10.1016/j.ccr.2009.01.016. http://dx.doi.org/10.1016/j.ccr.2009.01.01610.1016/j.ccr.2009.01.016Suche in Google Scholar

[3] Boudou, M., Ogawa, C., & Kobayashi, S. (2006). Chiral scandium-catalysed enantioselective ring-opening of meso-epoxides with N-heterocycle, alcohol and thiol derivatives in water. Advanced Synthesis & Catalysis, 348, 2585–2589. DOI: 10.1002/adsc.200600290. http://dx.doi.org/10.1002/adsc.20060029010.1002/adsc.200600290Suche in Google Scholar

[4] Buchholz, R. R., Etienne, M. E., Dorgelo, A., Mirams, R. E., Smith, S. J., Chow, S. Y., Hanton, L. R., Jameson, G. B., Schenk, G., & Gahan, L. R. (2008). A structural and catalytic model for zinc phosphoesterases. Dalton Transactions, 2008, 6045–6054. DOI: 10.1039/b806391e. http://dx.doi.org/10.1039/b806391e10.1039/b806391eSuche in Google Scholar

[5] Bujacz, A., Turek, M., Majzner, W., & Lodyga-Chruscinska, E. (2010). X-ray structure of a novel histidine-copper(II) complex. Russian Journal of Coordination Chemistry, 36, 430–435. DOI: 10.1134/s1070328410060023. http://dx.doi.org/10.1134/S107032841006002310.1134/S1070328410060023Suche in Google Scholar

[6] Campbell, P. N., Creasey, N. H., & Parr, C. W. (1952). The specificity of muscle phosphorylase. Biochemical Journal, 52, 448–452. 10.1042/bj0520448Suche in Google Scholar

[7] Chang, Y. C., & Chen, D. H. (2009). Highly efficient hydrolysis of phosphodiester by a copper(II)-chelated chitosan magnetic nanocarrier. Reactive and Functional Polymers, 69, 601–605. DOI: 10.1016/j.reactfunctpolym.2009.04.001. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.04.00110.1016/j.reactfunctpolym.2009.04.001Suche in Google Scholar

[8] Chin, J., Banaszczyk, M., Jubian, V., & Zou, X. (1989). Cobalt(III) complex-promoted hydrolysis of phosphate diesters: Comparison in reactivity of rigid cis-diaquotetraazacobalt( III) complexes. Journal of the American Chemical Society, 111, 186–190. DOI: 10.1021/ja00183a029. http://dx.doi.org/10.1021/ja00183a02910.1021/ja00183a029Suche in Google Scholar

[9] Chin, J. (1991). Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach. Accounts of Chemical Research, 24, 145–152. DOI: 10.1021/ar00005a004. http://dx.doi.org/10.1021/ar00005a00410.1021/ar00005a004Suche in Google Scholar

[10] Chin, J. (1997). Artificial dinuclear phosphoesterases. Current Opinion in Chemical Biology, 1, 514–521. DOI: 10.1016/ s1367-5931(97)80046-4. http://dx.doi.org/10.1016/S1367-5931(97)80046-410.1016/S1367-5931(97)80046-4Suche in Google Scholar

[11] Daines, T. L., & Morse, K. W. (1976). A spectrophotometric method for determination of glucose in blood serum. A freshman laboratory experiment for medically and biologically oriented students. Journal of Chemical Education, 53, 126–127. DOI: 10.1021/ed053p126. http://dx.doi.org/10.1021/ed053p12610.1021/ed053p126Suche in Google Scholar PubMed

[12] Deal, K. A., Park, G. S., Shao, J. L., Chasteen, N. D., Brechbiel, M. W., & Planalp, R. P. (2001). Copper(II) complexes of novel N-alkylated derivatives of cis,cis-1,3,5-triaminocyclohexane. 2. Metal-promoted phosphate diester hydrolysis. Inorganic Chemistry, 40, 4176–4182. DOI: 10.1021/ic000830d. http://dx.doi.org/10.1021/ic000830d10.1021/ic000830dSuche in Google Scholar PubMed

[13] Desbouis, D., Troitsky, I. P., Belousoff, M. J., Spiccia, L., & Graham, B. (2012). Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coordination Chemistry Reviews, 256, 897–937. DOI: 10.1016/j.ccr.2011.12.005. http://dx.doi.org/10.1016/j.ccr.2011.12.00510.1016/j.ccr.2011.12.005Suche in Google Scholar

[14] Deschamps, P., Kulkarni, P. P., & Sarkar, B. (2004). X-ray structure of physiological copper(II)-bis(l-histidinato) complex. Inorganic Chemistry, 43, 3338–3340. DOI: 10.1021/ ic035413q. http://dx.doi.org/10.1021/ic035413q10.1021/ic035413qSuche in Google Scholar PubMed

[15] Dwars, T., Paetzold, E., & Oehme, G. (2005). Reactions in micellar systems. Angewandte Chemie International Edition, 44, 7174–7199. DOI: 10.1002/anie.200501365. http://dx.doi.org/10.1002/anie.20050136510.1002/anie.200501365Suche in Google Scholar PubMed

[16] Gellman, S. H., Petter, R., & Breslow, R. (1986). Catalytic hydrolysis of a phosphate triester by tetracoordinated zinc complexes. Journal of the American Chemical Society, 108, 2388–2394. DOI: 10.1021/ja00269a041. http://dx.doi.org/10.1021/ja00269a04110.1021/ja00269a041Suche in Google Scholar PubMed

[17] Han, Q. X., Zhang, L. J., He, C., Niu, J. Y., & Duan, C. Y. (2012). Metal-organic frameworks with phosphotungstate incorporated for hydrolytic cleavage of a DNA-model phosphodiester. Inorganic Chemistry, 51, 5118–5127. DOI: 10.1021/ic202685e. http://dx.doi.org/10.1021/ic202685e10.1021/ic202685eSuche in Google Scholar PubMed

[18] Holyer, R. H., Hubbard, C. D., Kettle, S. F. A., & Wilkins, R. G. (1965). The kinetics of replacement reactions of complexes of the transition metals with 1,10-phenanthroline and 2,2′-bipyridine. Inorganic Chemistry, 4, 929–935. DOI: 10.1021/ic50029a002. http://dx.doi.org/10.1021/ic50029a00210.1021/ic50029a002Suche in Google Scholar

[19] Jiang, F. B., Du, J., Yu, X. Q., Bai, J. K., & Zeng, X. C. (2004). Metallomicellar catalysis: accelerated hydrolysis of BNPP by copper(II), zinc(II), and nickel(II) complexes of long alkanol-imidazole in CTAB micellar solution. Journal of Colloid and Interface Science, 273, 497–504. DOI: 10.1016/j.jcis.2004.01.078. http://dx.doi.org/10.1016/j.jcis.2004.01.07810.1016/j.jcis.2004.01.078Suche in Google Scholar PubMed

[20] Jiang, F. B., Jiang, B. Y., Cao, Y. S., Meng, X., Yu, X. G., & Zeng, X. C. (2005). Metallomicellar catalysis: Hydrolysis of phosphate monoester by Cu(II), Zn(II), Ni(II) and Co(II) complexes of pyridyl ligands in CTAB micellar solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254, 91–97. DOI: 10.1016/j.colsurfa.2004.11.032. http://dx.doi.org/10.1016/j.colsurfa.2004.11.03210.1016/j.colsurfa.2004.11.032Suche in Google Scholar

[21] Li, X. L., Li, H., Liu, G. Q., Deng, Z. W., Wu, S. L., Li, P. H., Xu, Z. S., Xu, H. B., & Chu, P. K. (2012). Magnetiteloaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials, 33, 3013–3024. DOI: 10.1016/j.biomaterials.2011.12.042. http://dx.doi.org/10.1016/j.biomaterials.2011.12.04210.1016/j.biomaterials.2011.12.042Suche in Google Scholar PubMed

[22] Long, X. H., Yang, P. Y., Liu, Q., Yao, J., Wang, Y., He, G. H., Hong, G. Y., & Ni, J. Z. (2011). Metabolomic profiles delineate potential roles for gadolinium chloride in the proliferation or inhibition of Hela cells. Biometals, 24, 663–677. DOI: 10.1007/s10534-011-9419-4. http://dx.doi.org/10.1007/s10534-011-9419-410.1007/s10534-011-9419-4Suche in Google Scholar PubMed

[23] Mello, R. S., Orth, E. S., Loh, W., Fiedler, H. D., & Nome, F. (2011). Polymers containing hydroxamate groups: Nanoreactors for hydrolysis of phosphoryl esters. Langmuir, 27, 15112–15119. DOI: 10.1021/la203437j. http://dx.doi.org/10.1021/la203437j10.1021/la203437jSuche in Google Scholar PubMed

[24] Meng, X.G., Guo, Y., Hu, C. W., & Zeng, X. C. (2004). Mimic models of peroxidase — kinetic studies of the catalytic oxidation of hydroquinone by H2O2. Journal of Inorganic Biochemistry, 98, 2107–2113. DOI: 10.1016/j.jinorgbio.2004.09.019. http://dx.doi.org/10.1016/j.jinorgbio.2004.09.01910.1016/j.jinorgbio.2004.09.019Suche in Google Scholar PubMed

[25] Nolting, D., Ottosson, N., Faubel, M., Hertel, I. V., & Winter, B. (2008). Pseudoequivalent nitrogen atoms in aqueous imidazole distinguished by chemical shifts in photoelectron spectroscopy. Journal of the American Chemical Society, 130, 8150–8151. DOI: 10.1021/ja8022384. http://dx.doi.org/10.1021/ja802238410.1021/ja8022384Suche in Google Scholar PubMed

[26] Ogino, K., Kashihara, N., Ueda, T., Isaka, T., Yoshida, T., & Tagaki, W. (1992). Hydrolytic metalloenzyme models. Metal ion dependent site-selective acylation of hydroxyl groups of bis-imidazole ligands catalyzed by Zn2+ and Cu2+ in the reaction with p-nitrophenyl 2-pyridinecarboxylate in a cationic surfactant micelle. Bulletin of the Chemical Society of Japan, 65, 373–384. DOI: 10.1246/bcsj.65.373. http://dx.doi.org/10.1246/bcsj.65.37310.1246/bcsj.65.373Suche in Google Scholar

[27] Olsson, R., Giesler, R., Loring, J. S., & Persson, P. (2010). Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions. Langmuir, 26, 18760–18770. DOI: 10.1021/la1026152. http://dx.doi.org/10.1021/la102615210.1021/la1026152Suche in Google Scholar PubMed

[28] Pople, J. A. (2003). Gaussian 03, revision B.05 [computer software]. Gaussian, Inc. Pittsburgh, PA, USA. Suche in Google Scholar

[29] Rashid, N., Kanai, T., Atomi, H., & Imanaka, T. (2004). Among multiple phosphomannomutase gene orthologues, only one gene encodes a protein with phosphoglucomutase and phosphomannomutase activities in Thermococcus kodakaraensis. Journal of Bacteriology, 186, 6070–6076. DOI: 10.1128/jb.186.18.6070-6076.2004. http://dx.doi.org/10.1128/JB.186.18.6070-6076.200410.1128/JB.186.18.6070-6076.2004Suche in Google Scholar PubMed PubMed Central

[30] Sasidharan, M., Gunawardhana, N., Luitel, H. N., Yokoi, T., Inoue, M., Yusa, S. i., Watari, T., Yoshio, M., Tatsumi, T., & Nakashima, K. (2012). Novel LaBO3 hollow nanospheres of size 34 ± 2 nm templated by polymeric micelles. Journal of Colloid and Interface Science, 370, 51–57. DOI: 10.1016/j.jcis.2011.12.050. http://dx.doi.org/10.1016/j.jcis.2011.12.05010.1016/j.jcis.2011.12.050Suche in Google Scholar PubMed

[31] Seidel, Y. E., Lindström, R., Jusys, Z., Cai, J., Wiedwald, U., Ziemann, P., & Behm, R. J. (2007). Nanostructured Pt/GC model electrodes prepared by the deposition of metal-salt-loaded micelles. Langmuir, 23, 5795–5801. DOI:10.1021/la063295o. http://dx.doi.org/10.1021/la063295o10.1021/la063295oSuche in Google Scholar PubMed

[32] Shen, L. M., Liu, Q., Ni, J. Z., & Hong, G. Y. (2009). A proteomic investigation into the human cervical cancer cell line HeLa treated with dicitratoytterbium (III) complex. Chemico-Biological Interactions, 181, 455–462. DOI: 10.1016/j.cbi.2009.07.013. http://dx.doi.org/10.1016/j.cbi.2009.07.01310.1016/j.cbi.2009.07.013Suche in Google Scholar

[33] Srivatsan, S. G., Parvez, M., & Verma, S. (2002). Modeling of prebiotic catalysis with adenylated polymeric templates: Crystal structure studies and kinetic characterization of template-assisted phosphate ester hydrolysis. Chemistry A European Journal, 8, 5184–5191. DOI: 10.1002/1521-3765(20021115)8:22<5184::AID-CHEM5184>3.0.CO;2-2. http://dx.doi.org/10.1002/1521-3765(20021115)8:22<5184::AID-CHEM5184>3.0.CO;2-210.1002/1521-3765(20021115)8:22<5184::AID-CHEM5184>3.0.CO;2-2Suche in Google Scholar

[34] Su, X. G., Zheng, X. N., & Ni, J. Z. (2009). Lanthanum citrate induces anoikis of Hela cells. Cancer Letters, 285, 200–209. DOI: 10.1016/j.canlet.2009.05.018. http://dx.doi.org/10.1016/j.canlet.2009.05.01810.1016/j.canlet.2009.05.018Suche in Google Scholar

[35] Taşcioglu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2. http://dx.doi.org/10.1016/0040-4020(96)00669-210.1016/0040-4020(96)00669-2Suche in Google Scholar

[36] Xie, J. Q., Li, C., Wang, M., & Jiang, B. Y. (2013). Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate. Chemical Papers, 67, 365–371. DOI: 10.2478/s11696-012-0281-9. http://dx.doi.org/10.2478/s11696-012-0281-910.2478/s11696-012-0281-9Suche in Google Scholar

[37] Yamashiro, D., Blake, J., & Li, C. H. (1972). The use of Nα,N im-bis( tret-butyloxycarbonyl)histidine and N α-2-(p-biphenylyl) isopropyloxycarbonyl-N im-tert-butyloxycarbonylhistidine in the solid-phase synthesis of histidine-containing peptides. Journal of the American Chemical Society, 94, 2855–2859. DOI: 10.1021/ja00763a053. http://dx.doi.org/10.1021/ja00763a05310.1021/ja00763a053Suche in Google Scholar

[38] Ye, Y., Ding, Q. P., & Wu, J. (2008). Three-component reaction of 2-alkynylbenzaldehyde, amine, and nucleophile using Lewis acid-surfactant combined catalyst in water. Tetrahedron, 64, 1378–1382. DOI: 10.1016/j.tet.2007.11.055. http://dx.doi.org/10.1016/j.tet.2007.11.05510.1016/j.tet.2007.11.055Suche in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. A spectrophotometric method for plant pigments determination and herbs classification
  2. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
  3. Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
  4. Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
  5. Effect of the preparation route on the structure and microstructure of LaCoO3
  6. Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
  7. Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
  8. Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
  9. MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
  10. Carbon nanotube-layered double hydroxide nanocomposites
  11. Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
  12. Reduction of nitroblue tetrazolium to formazan by folic acid
  13. Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
  14. Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
  15. Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
  16. QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
  17. Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
  18. “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0492-8/html
Button zum nach oben scrollen