Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
Abstract
The reaction of dppm (1,1-bis(diphenylphosphino)methane) with 2-bromo-4-phenylacetophenone and benzyl bromoacetate in chloroform produces new phosphonium salts, [Ph2PCH2PPh2CH2C(O) C6H4Ph]Br (I) and [Ph2PCH2PPh2CH2COOCH2Ph]Br (II). By allowing the phosphonium salts to react with the appropriate base, the bidentate phosphorus ylides, Ph2PCH2PPh2=C(H)C(O)C6H4Ph (III) and Ph2PCH2PPh2=C(H)C(O)OCH2Ph (IV), were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4Ph)]} (X = Cl (V); X = Br (VI); X = I (VII)) and {HgX2[(Ph2PCH2PPh2C(H)COOCH2Ph)]} (X = Cl (VIII); X = Br (IX); X = I (X)). The FTIR and 1H, 31P and 13C NMR spectra were studied. The structure of compound III was unequivocally determined by the single-crystal X-ray diffraction technique. Single-crystal X-ray analysis of the {HgBr2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} complex (XI) revealed the presence of a mononuclear complex containing the Hg atom in a distorted tetrahedral environment. In all complexes, the ylides referred to above were coordinated through the ylidic carbon and the phosphine atom.
[1] Abu-Gnim, C., & Amer, I. (1996). Phosphine oxides as ligands in the hydroformylation reaction. Journal of Organometallic Chemistry, 516, 235–243. DOI: 10.1016/0022-328x(96)06137-2. http://dx.doi.org/10.1016/0022-328X(96)06137-210.1016/0022-328X(96)06137-2Suche in Google Scholar
[2] Agilent Technologies (2011). CrysAlisPro software system, Version 1.171.35.19. Oxford, UK: Agilent Technologies. Suche in Google Scholar
[3] Barbaro, P., Cecconi, F., Ghilardi, C. A., Midollini, S., Orlandini, A., & Vacca, A. (1994). Metal coordination and Hg-C bond protonolysis in organomercury(II) compounds. Synthesis, characterization, and reactivity of the tetrahedral complexes [(np3)HgR][(CF3)SO3] {np3 = N(CH2CH2PPh2)3; R= CH3, C2H5, C6H5}. Inorganic Chemistry, 33, 6163–6170. DOI: 10.1021/ic00104a029. http://dx.doi.org/10.1021/ic00104a02910.1021/ic00104a029Suche in Google Scholar
[4] Bell, N. A., Dee, T. D. Goldstein, M., McKenna, P. J., & Nowell, I. W. (1983). Mercury(II) halide complexes of tertiary phosphines. Part VI. The crystal structure of HgCl2(PPh3)2 and a comparison with related compounds. Inorganica Chimica Acta, 71, 135–140. DOI: 10.1016/s0020-1693(00)83650-6. http://dx.doi.org/10.1016/S0020-1693(00)83650-610.1016/S0020-1693(00)83650-6Suche in Google Scholar
[5] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Haward, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/s0021889808042726. http://dx.doi.org/10.1107/S002188980804272610.1107/S0021889808042726Suche in Google Scholar
[6] Ebrahim, M. M., Stoeckli-Evans, H., & Panchanatheswaran, K. (2007). Reactivity of mercury(II) halides with the unsymmetrical phosphorus ylide Ph2PCH2CH2PPh2=C(H)C(O)Ph: Crystal structure of {HgI2[PPh2CH2CH2PPh2=C(H) C(O)Ph]n}. Polyhedron, 26, 3491–3495. DOI: 10.1016/j.poly.2007.03.059. http://dx.doi.org/10.1016/j.poly.2007.03.05910.1016/j.poly.2007.03.059Suche in Google Scholar
[7] Ebrahim, M. M., Panchanatheswaran, K., Neels, A., & Stoeckli-Evans, H. (2009). Mercury(II) complexes of stabilized phosphine-phosphonium ylide derived from bis(diphenylphosphino) methane: Synthesis, spectra and crystal structures. Journal of Organometallic Chemistry, 694, 643–648. DOI: 10.1016/j.jorganchem.2008.11.051. http://dx.doi.org/10.1016/j.jorganchem.2008.11.05110.1016/j.jorganchem.2008.11.051Suche in Google Scholar
[8] Falvello, L. R., Fernαndez, S., Navarro, R., & Urriolabeitia, E. P. (2000). Reactivity of Pd(0) complexes with the phosphino ylide [Ph2PCH2PPh2=C(H)C(O)Me]. Molecular structure of [Pd(PPh2CHPPh2C(H)C(O)Me)2]. Inorganic Chemistry, 39, 2957–2960. DOI: 10.1021/ic990923z. http://dx.doi.org/10.1021/ic990923z10.1021/ic990923zSuche in Google Scholar
[9] Falvello, L. R., Fernαndez, S., Larraz, C., Llusar, R., Navarro, R., & Urriolabeitia, E. P. (2001). C-H activation in phosphonium salts promoted by platinum(II) complexes. Organometallics, 20, 1424–1436. DOI: 10.1021/om001034i. http://dx.doi.org/10.1021/om001034i10.1021/om001034iSuche in Google Scholar
[10] Falvello, L. R., Margalejo, M. E., Navarro, R., & Urriolabeitia, E. P. (2003). Synthesis and characterization of PdII complexes containing cyclic bis-ylides. Inorganica Chimica Acta, 347, 75–85. DOI: 10.1016/s0020-1693(02)01448-2. http://dx.doi.org/10.1016/S0020-1693(02)01448-210.1016/S0020-1693(02)01448-2Suche in Google Scholar
[11] Grushin, V. V. (2004). Mixed phosphine-phosphine oxide ligands. Chemical Reviews, 104, 1629–1662. DOI: 10.1021/cr0 30026j. http://dx.doi.org/10.1021/cr030026jSuche in Google Scholar
[12] Heinicke, J., Peulecke, N., Köhler, M., He, M., & Keim, W. (2005). Tuning of nickel 2-phosphinophenolates — catalysts for oligomerization and polymerization of ethylene. Journal of Organometallic Chemistry, 690, 2449–2457. DOI: 10.1016/j.jorganchem.2004.10.012. http://dx.doi.org/10.1016/j.jorganchem.2004.10.01210.1016/j.jorganchem.2004.10.012Suche in Google Scholar
[13] Heydari, R., Maghsoodlou, M. T., Habibi-Khorassani, S. M., Hazeri, N., Barahuie, F., & Rostamizadeh, M. (2010). An efficient method for synthesis of stable phosphorus ylides and 1,4-diionic organophosphorus compounds in the presence of sodium dodecyl sulfate in aqueous media. Arabian Journal of Chemistry, 3, 229–232. DOI: 10.1016/j.arabjc.2010.06.006. http://dx.doi.org/10.1016/j.arabjc.2010.06.00610.1016/j.arabjc.2010.06.006Suche in Google Scholar
[14] Janardanan, D., & Sunoj, R. B. (2007). Computational investigations on the general reaction profile and diastereoselectivity in sulfur ylide promoted aziridination. Chemistry — A European Journal, 13, 4805–4815. DOI: 10.1002/chem.200700 303. http://dx.doi.org/10.1002/chem.200700303Suche in Google Scholar
[15] Johnson, A. W. (1993). Ylides and imines of phosphorus. New York, NY, USA: Wiley. Suche in Google Scholar
[16] Kalyanasundari, M., Panchanatheswaran, K., Robinson, W. T., & Wen, H. (1995). Reactions of benzoylmethylenetriphenylphosphorane with mercury(II) halides: spectral and structural characterization of [(C6H5)3PCHCOC6H5 · Hg Cl2]2 · 2CH3OH and [(C6H5)3PCHCOC6H5 · HgI2]2. Journal of Organometallic Chemistry, 491, 103–109. DOI: 10.1016/0022-328x(94)05217-y. http://dx.doi.org/10.1016/0022-328X(94)05217-Y10.1016/0022-328X(94)05217-YSuche in Google Scholar
[17] Koezuka, H., Matsubayashi, G., & Tanaka, T. (1974). Ylide-metal complex. Preparations and structures of palladium(II) and platinum(II) halide complexes with a stable sulfur ylide. Inorganic Chemistry, 13, 443–446. DOI: 10.1021/ic50132a042. http://dx.doi.org/10.1021/ic50132a04210.1021/ic50132a042Suche in Google Scholar
[18] Koezuka, H., Matsubayashi, G., & Tanaka, T. (1976). Ylide-metal complex. Preparations and structures of palladium(II) and platinum(II) halide complexes with some phenacylides. Inorganic Chemistry, 15, 417–421. DOI: 10.1021/ic50156a035. http://dx.doi.org/10.1021/ic50156a03510.1021/ic50156a035Suche in Google Scholar
[19] Kokotos, C. G., & Aggarwal, V. K. (2007). Aminals as substrates for sulfur ylides: A synthesis of functionalized aziridines and N-heterocycles. Organic Letters, 9, 2099–2102. DOI: 10.1021/ol070507f. http://dx.doi.org/10.1021/ol070507f10.1021/ol070507fSuche in Google Scholar
[20] Kolodiazhnyi, O. I. (1997). Methods of preparation of Csubstituted phosphorus ylides and their application in organic synthesis. Russian Chemical Reviews, 52, 225–254. DOI: 10.1070/rc1997v066n03abeh000232. http://dx.doi.org/10.1070/RC1997v066n03ABEH00023210.1070/RC1997v066n03ABEH000232Suche in Google Scholar
[21] Kubicki, M., Hadjikakou, S. K., & Xanthopoulou, M. N. (2001). Synthesis, characterisation and study of mercury(II) bromide complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [bis(triphenylphosphine) dibromo mercury(II)] and [dibromo (pyrimidine-2-thionato) (triphenylphosphine) mercury(II)]. Extended intra-molecular linkages via N-H…Br and C-H…Br interactions. Polyhedron, 20, 2179–2185. DOI: 10.1016/s0277-5387(01)00827-0. http://dx.doi.org/10.1016/S0277-5387(01)00827-010.1016/S0277-5387(01)00827-0Suche in Google Scholar
[22] Lin, I. J. B., Shy, H. C., Liu, C. W., Liu, L. K., & Yeh, S. K. (1990). Mixed sulphur and phosphorus ylide complexes of palladium formed by phase-transfer catalysis. X-Ray crystal structure of [Pd{(CH2)2S(O)Me}{Ph2PCH2PPh2CHC(O)Ph}]I·CH2Cl2·H2O. Journal of the Chemical Society, Dalton Transactions, 1990, 2509–2514. DOI: 10.1039/dt9900002509. http://dx.doi.org/10.1039/dt990000250910.1039/DT9900002509Suche in Google Scholar
[23] Navarro, R., & Urriolabeitia, E. P. (1999). α-Stabilized phosphoylides as versatile multifunctional ligands. Journal of the Chemical Society, Dalton Transactions, 1999, 4111–4122. DOI: 10.1039/a906116i. http://dx.doi.org/10.1039/a906116i10.1039/a906116iSuche in Google Scholar
[24] Nishiyama, H., Itoh, K., & Ishii, Y. (1975). A convenient synthesis and structure of stabilized ylide complexes of palladium(II). Journal of Organometallic Chemistry, 87, 129–135. DOI: 10.1016/s0022-328x(00)80349-6. http://dx.doi.org/10.1016/S0022-328X(00)80349-610.1016/S0022-328X(00)80349-6Suche in Google Scholar
[25] Oosawa, Y., Urabe, H., Saito, T., & Sasaki, Y. (1976). Preparation of chelate ylide ligands and their palladium(II) and platinum(II) halide complexes. Journal of Organometallic Chemistry, 122, 113–121. DOI: 10.1016/s0022-328x(00)92752-9. http://dx.doi.org/10.1016/S0022-328X(00)92752-910.1016/S0022-328X(00)92752-9Suche in Google Scholar
[26] Sabounchei, S. J., Jodaian, V., Salehzadeh, S., Samiee, S., Dadrass, A., Bayat, M., & Khavasi, H. R. (2010a). Synthesis of new phosphonium ylides containing thiophene and furan rings and study of their reaction with mercury(II) halides: Spectral and structural characterization. Helvetica Chimica Acta, 93, 1105–1119. DOI: 10.1002/hlca.200900305. http://dx.doi.org/10.1002/hlca.20090030510.1002/hlca.200900305Suche in Google Scholar
[27] Sabounchei, S. J., Samiee, S., Salehzadeh, S., Bolboli Nojini, Z., & Irran, E. (2010b). Four-coordinate and pseudo five-coordinate Hg(II) complexes of a new bidentate phosphorus ylide: X-ray crystal structure and spectral characterization. Journal of Organometallic Chemistry, 695, 1441–1450. DOI: 10.1016/j.jorganchem.2010.02.029. http://dx.doi.org/10.1016/j.jorganchem.2010.02.02910.1016/j.jorganchem.2010.02.029Suche in Google Scholar
[28] Sabounchei, S. J., Samiee, S., Salehzadeh, S., Bolboli Nojini, Z., Bayat, M., Irran, E., & Borowski, M. (2010c). New mononuclear mercury(II) complexes of a bifunctionalized ylide containing five-membered chelate ring: Spectral and structural characterization. Inorganica Chimica Acta, 363, 3654–3661. DOI: 10.1016/j.ica.2010.05.004. http://dx.doi.org/10.1016/j.ica.2010.05.00410.1016/j.ica.2010.05.004Suche in Google Scholar
[29] Sabounchei, S. J., Nemattalab, H., & Khavasi, H. R. (2010d). Crystal structure of 4’-chlorobenzoylmethylenetriphenylphosphorane ylide, C26H20ClOP. X-ray Structure Analysis Online, 26, 35–36. DOI: 10.2116/xraystruct.26.35. http://dx.doi.org/10.2116/xraystruct.26.3510.2116/xraystruct.26.35Suche in Google Scholar
[30] Sabounchei, S. J., Panahimehr, M., Ahmadi, M., Nasri, Z., & Khavasi, H. R. (2013a). Four-coordinate Pd(II) complexes containing non-symmetric phosphorus ylides: Synthesis, characterization, and catalytic behavior towards Suzuki reaction. Journal of Organometallic Chemistry, 723, 207–213. DOI: 10.1016/j.jorganchem.2012.10.004. http://dx.doi.org/10.1016/j.jorganchem.2012.10.00410.1016/j.jorganchem.2012.10.004Suche in Google Scholar
[31] Sabounchei, S. J., Panahimehr, M., Salehzadeh, S., Bayat, M., Khavasi, H. R., & Morales-Morales, D. (2013b). Structural, theoretical and spectroscopic study of mercury(II) complexes of two new unsymmetric phosphorus ylides. Phosphorus, Sulfur, and Silicon and the Related Elements, in press. DOI: 10.1080/10426507.2013.779274. 10.1080/10426507.2013.779274Suche in Google Scholar
[32] Saravanabharathi, D., Venkatakrishnan, T. S., Nethaji, M., & Krishnamurthy, S. S. (2003). Rhodium(I) complexes of α-keto-stabilised 1,2-bis(diphenylphosphino)alkane mono ylides. Journal of Chemical Sciences, 115, 741–749. DOI: 10.1007/bf02708264. http://dx.doi.org/10.1007/BF0270826410.1007/BF02708264Suche in Google Scholar
[33] Sbovata, S. M., Tassan, A., & Facchin, G. (2008). Synthesis and coordination of the bifunctionalized ylides Ph2P(CH2)n(Ph)2 P=CHCOOMe (n = 1, 2) and ketenylidene Ph2P(CH2)2(Ph)2P=C=C=O to Pd and Pt complexes. Inorganica Chimica Acta, 361, 3177–3183. DOI: 10.1016/j.ica.2007.10.055. http://dx.doi.org/10.1016/j.ica.2007.10.05510.1016/j.ica.2007.10.055Suche in Google Scholar
[34] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/s0108767307043930. 10.1107/S0108767307043930Suche in Google Scholar PubMed
[35] Spannenberg, A., Baumann, W., & Rosenthal, U. (2000). Palladium(II) complexes of α-stabilized phosphorus ylides. Organometallics, 19, 3991–3993. DOI: 10.1021/om000429z. http://dx.doi.org/10.1021/om000429z10.1021/om000429zSuche in Google Scholar
[36] Stoe & Cie (2005a). X-AREA and X-RED software package [computer software]. Darmstadt, Germany: Stoe & Cie. Suche in Google Scholar
[37] Stoe & Cie (2005b). X-STEP 32 software package [computer software]. Darmstadt, Germany: Stoe & Cie. Suche in Google Scholar
[38] Takahashi, H., Oosawa, Y., Kobayashi, A., Saito, T., & Sasaki, Y. (1976). Structure of a chelate ylide complex: Dichloro(benzoylmethylenediphenyl-2-diphenylphosphinoethyl phosphorane)palladium. Chemistry Letters, 5, 15–16. DOI: 10.1246/cl.1976.15. http://dx.doi.org/10.1246/cl.1976.1510.1246/cl.1976.15Suche in Google Scholar
[39] Urriolabeitia, E. P. (2008). Bonding properties and bond activation of ylides: recent findings and outlook. Dalton Transactions, 2008, 5673–5686. DOI: 10.1039/b806787b. http://dx.doi.org/10.1039/b806787b10.1039/b806787bSuche in Google Scholar
[40] Usón, R., Forniés, J., Navarro, R., & Ortega, A. M. (1987). Perhalophenyl complexes of palladium(II) containing ketostabilized phosphorus ylides of the type Ph2P(CH2)nPPh2CHC(O)R. Journal of Organometallic Chemistry, 334, 389–397. DOI: 10.1016/0022-328x(87)80101-8. http://dx.doi.org/10.1016/0022-328X(87)80101-810.1016/0022-328X(87)80101-8Suche in Google Scholar
[41] Viau, L., Lepetit, C., Commenges, G., & Chauvin, R. (2001). Chiral phosphine-phosphonium ylide rhodium complexes. Organometallics, 20, 808–810. DOI: 10.1021/om000885n. http://dx.doi.org/10.1021/om000885n10.1021/om000885nSuche in Google Scholar
[42] Vicente, J., Chicote, M. T., Lagunas, M. C., & Jones, P. G. (1991). Synthesis and structural characterization of gold-(I), -(III) and silver(I) complexes of the ylide ligand Ph3P=CHC(O)NMe2. Crystal structure of [(AuPPh3)2{μ-C(PPh3)C(O)NMe2}]ClO4. Journal of the Chemical Society, Dalton Transactions, 1991, 2579–2583. DOI: 10.1039/dt9910002579. http://dx.doi.org/10.1039/dt9910002579Suche in Google Scholar
[43] Vicente, J., Singhal, A. R., & Jones, P. G. (2002). New ylide-, alkynyl-, and mixed alkynyl/ylide-gold(I) complexes. Organometallics, 21, 5887–5900. DOI: 10.1021/om020753p. http://dx.doi.org/10.1021/om020753p10.1021/om020753pSuche in Google Scholar
[44] Wegman, R. W., Abatjoglou, A. G., & Harrison, A. M. (1987). Carbonylation of methanol at unusually low temperature and pressure with cis-RhCl(CO)2Ph2P(CH2)2P(O)Ph2. Journal of the Chemical Society, Chemical Communications, 1987, 1891–1892. DOI: 10.1039/c39870001891. http://dx.doi.org/10.1039/c3987000189110.1039/c39870001891Suche in Google Scholar
[45] Weleski, E. T., Jr., Silver, J. L., Jansson, M. D., & Burmeister, J. L. (1975). Palladium(II), platinum(II) and mercury( II) complexes of ambidentate phosphonium, arsonium, sulfonium and pyridinium ylids. Journal of Organometallic Chemistry, 102, 365–385. DOI: 10.1016/s0022-328x(00)95204-5. http://dx.doi.org/10.1016/S0022-328X(00)95204-510.1016/S0022-328X(00)95204-5Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A spectrophotometric method for plant pigments determination and herbs classification
- Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
- Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
- Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
- Effect of the preparation route on the structure and microstructure of LaCoO3
- Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
- Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
- Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
- MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
- Carbon nanotube-layered double hydroxide nanocomposites
- Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
- Reduction of nitroblue tetrazolium to formazan by folic acid
- Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
- Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
- Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
- QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
- Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
- “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity
Artikel in diesem Heft
- A spectrophotometric method for plant pigments determination and herbs classification
- Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite
- Effect of support on activity of palladium catalysts in nitrobenzene hydrogenation
- Biphasic recognition chiral extraction — novel way of separating pantoprazole enantiomers
- Effect of the preparation route on the structure and microstructure of LaCoO3
- Synthesis, characterisation, and antioxidant study of Cr(III)-rutin complex
- Mercury(II) complexes of new bidentate phosphorus ylides: synthesis, spectra and crystal structures
- Synthesis and properties of CaAl-layered double hydroxides of hydrocalumite-type
- MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content
- Carbon nanotube-layered double hydroxide nanocomposites
- Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions
- Reduction of nitroblue tetrazolium to formazan by folic acid
- Michael addition of phenylacetonitrile to the acrylonitrile group leading to diphenylpentanedinitrile. Structural data and theoretical calculations
- Efficient hydrolysis of glucose-1-phosphate catalyzed by metallomicelles with histidine residue
- Synthesis of [Re2Cl4(O)2(µ-O)(3,5-lut)4] and investigation of its structure via X-ray and spectroscopic measurements and DFT calculations
- QSAR modeling of aromatase inhibition by flavonoids using machine learning approaches
- Influence of freezing on physicochemical forms of natural and technogenic radionuclides in Chernozem soil
- “Green synthesis” of benzothiazepine library of indeno analogues and their in vitro antimicrobial activity