Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
Abstract
In the current study, the degradation of reactive orange 122 (RO 122) dye was carried out under UV and gamma irradiation in presence of H2O2. The effect of variables such as UV exposure time, gamma-ray absorbed dose, initial concentration of dye and oxidant dose were investigated. The removal of 64.10, 58.84 and 55.46 (%) was observed for 50, 100 and 150 (mg/L) dye concentrations, respectively using UV radiation time of 150 (min). The degradation was enhanced to 80.39, 69.95 and 67.01 (%) when UV radiation was employed in the presence of H2O2 (0.5 mL/L) for above concentrations respectively. The degradation was further improved to 97, 92.54 and 81.32 (%) using 5 kGy absorbed dose along with H2O2 (0.5 mL/L). The reduction in chemical oxygen demand (COD) was 77, 64 and 57 (%) using UV/H2O2 (0.5 mL/L), while 63, 56 and 53 (%) in case of gamma/H2O2 for aforementioned concentrations. The removal efficiency (G-value), dose constants (k), dose indispensable for 50, 90 and 99 (%) degradation (D 0.5, D 0.90, and D 0.99) after the treatment with gamma radiation were determined. The G-value was noted as 0.46–0.0711 for 50–150 mg/L dye concentration for gamma irradiated samples which improved to 0.57–0.1204 for above mentioned concentrations in presence of H2O2. The FTIR analysis showed that all the peaks were disappeared using gamma/H2O2 at 5 kGy absorbed dose except a minor peak of −CO stretching. The degradation mechanism of dye followed pseudo-first-order kinetics. A significant decrease in peak area was observed by the HPLC analysis after treating the dye samples with gamma/H2O2 (0.5 mL/L) at absorbed dose of 5 kGy which has proven the process efficiency for dye degradation.
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the authorities of the National Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan for providing the facility of the gamma radiation source for the treatment of dye samples. We are also thankful to Dr. Muhammad Saeed for helping in data analysis.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R291), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare no conflicts of interest.
References
1. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Suche in Google Scholar
2. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. J. Z. F. P. C. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Suche in Google Scholar
3. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Suche in Google Scholar
4. Jamil, A., Bokhari, T. H., Iqbal, M., Bhatti, I. A., Zuber, M., Nisar, J., Masood, N. Z. Phys. Chem. 2020, 234, 279–294; https://doi.org/10.1515/zpch-2019-1384.Suche in Google Scholar
5. Khan, N. U. H., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 361–373; https://doi.org/10.1515/zpch-2018-1194.Suche in Google Scholar
6. Sasmaz, A., Sasmaz, B., Hein, J. R. Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Suche in Google Scholar
7. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Suche in Google Scholar
8. Dolatabadi, M., Ghaneian, M. T., Wang, C., Ahmadzadeh, S. J. Mol. Liq. 2021, 334, 116116; https://doi.org/10.1016/j.molliq.2021.116116.Suche in Google Scholar
9. Nisar, N., Ali, O., Islam, A., Ahmad, A., Yameen, M., Ghaffar, A., Iqbal, M., Nazir, A., Masood, N. Z. Phys. Chem. 2019, 233, 1603–1623; https://doi.org/10.1515/zpch-2018-1259.Suche in Google Scholar
10. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Suche in Google Scholar
11. Ahmad, M., Abbas, G., Haider, R., Jalal, F., Shar, G. A., Soomro, G. A., Qureshi, N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1469–1484; https://doi.org/10.1515/zpch-2018-1201.Suche in Google Scholar
12. Khan, N. U. H., Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817; https://doi.org/10.1515/zpch-2018-1313.Suche in Google Scholar
13. Dolatabadi, M., Świergosz, T., Ahmadzadeh, S. Sci. Total Environ. 2021, 772, 145323; https://doi.org/10.1016/j.scitotenv.2021.145323.Suche in Google Scholar PubMed
14. Ahmadzadeh, S., Kassim, A., Rezayi, M., Rounaghi, G. H. Molecules 2011, 16, 8130–8142; https://doi.org/10.3390/molecules16098130.Suche in Google Scholar PubMed PubMed Central
15. Alwadai, N., Mitra, S., Hedhili, M. N., Alamoudi, H., Xin, B., Alaal, N., Roqan, I. S. ACS Appl. Mater. Interfaces 2021, 13, 33335–33344; https://doi.org/10.1021/acsami.1c03424.Suche in Google Scholar PubMed
16. Ismail, R. M., Almaqtri, W. Q., Hassan, M. Chem. Int. 2021, 7, 21–29.Suche in Google Scholar
17. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89.Suche in Google Scholar
18. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139–144.Suche in Google Scholar
19. Minas, F., Chandravanshi, B. S., Leta, S. Chem. Int. 2017, 3, 392–405.Suche in Google Scholar
20. Djehaf, K., Bouyakoub, A. Z., Ouhib, R., Benmansour, H., Bentouaf, A., Mahdad, A., Moulay, N., Bensaid, D., Ameri, M. Chem. Int. 2017, 3, 414–419.Suche in Google Scholar
21. Daij, K. B., Bellebia, S., Bengharez, Z. Chem. Int. 2017, 3, 420–427.Suche in Google Scholar
22. Fouladgar, M., Ahmadzadeh, S. Appl. Surf. Sci. 2016, 379, 150–155; https://doi.org/10.1016/j.apsusc.2016.04.026.Suche in Google Scholar
23. Rezayi, M., Karazhian, R., Abdollahi, Y., Narimani, L., Sany, S. B. T., Ahmadzadeh, S., Alias, Y. Sci. Rep. 2014, 4, 1–8; https://doi.org/10.1038/srep04664.Suche in Google Scholar PubMed PubMed Central
24. Rounaghi, G., Mohajeri, M., Ahmadzadeh, S., Tarahomi, S. J. Inclusion Phenom. Macrocycl. Chem. 2009, 63, 365–372; https://doi.org/10.1007/s10847-009-9530-0.Suche in Google Scholar
25. Movahedyan, H., Mohammadi, A. S., Assadi, A. J. Environ. Sci. Health Environ. Sci. Eng. 2009, 6, 153–160.Suche in Google Scholar
26. Chen, Y. P., Liu, S. Y., Yu, H. Q., Yin, H., Li, Q. R. Chemosphere 2008, 72, 532–536; https://doi.org/10.1016/j.chemosphere.2008.03.054.Suche in Google Scholar PubMed
27. Muneer, M., Kanjal, M. I., Iqbal, M., Saeed, M., Khosa, M. K., Den, N. Z. U., Ali, S., Nazir, A. Appl. Radiat. Isot. 2020, 166, 109371; https://doi.org/10.1016/j.apradiso.2020.109371.Suche in Google Scholar PubMed
28. Muneer, M., Kanjal, M. I., Saeed, M., Javed, T., Haq, A. U., Den, N. Z. U., Jamal, M. A., Ali, S., Iqbal, M. Radiat. Phys. Chem. 2020, 177, 109115; https://doi.org/10.1016/j.radphyschem.2020.109115.Suche in Google Scholar
29. Basfar, A. A., Muneer, M., Alsager, O. A. Nukleonika 2017, 62, 61–68; https://doi.org/10.1515/nuka-2017-0008.Suche in Google Scholar
30. Alsager, O. A., Basfar, A. A., Muneer, M. Environ. Technol. 2018, 39, 967–976; https://doi.org/10.1080/09593330.2017.1317840.Suche in Google Scholar PubMed
31. Muneer, M., Bhatti, I., Iqbal, M., Ather, M. J. Chem. Soc. Pakistan 2012, 34, 787–792.Suche in Google Scholar
32. Rauf, M., Ashraf, S. S. J. Hazard Mater. 2009, 166, 6–16; https://doi.org/10.1016/j.jhazmat.2008.11.043.Suche in Google Scholar PubMed
33. Wang, M., Yang, R., Wang, W., Shen, Z., Bian, S., Zhu, Z. Radiat. Phys. Chem. 2006, 75, 286–291; https://doi.org/10.1016/j.radphyschem.2005.08.012.Suche in Google Scholar
34. uz Zaman, Q., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2021, 235, 1041–1053; https://doi.org/10.1515/zpch-2020-1640.Suche in Google Scholar
35. Sharif, S., uz Zaman, Q., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M. Z. Phys. Chem. 2021, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Suche in Google Scholar
36. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1077–1097; https://doi.org/10.1515/zpch-2020-1680.Suche in Google Scholar
37. Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. Z. Phys. Chem. 2020, 234, 1803–1817.10.1515/zpch-2018-1313Suche in Google Scholar
38. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Suche in Google Scholar
39. Özen, A. S., Aviyente, V., Klein, R. A. J. Phys. Chem. 2003, 107, 4898–4907.10.1021/jp026287zSuche in Google Scholar
40. Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., Sarfraz, S. Chem. Int. 2021, 7, 197–207.Suche in Google Scholar
41. Sasmaz, M., Senel, G. U., Obek, E. Bull. Environ. Contam. Toxicol. 2021, 106, 1050–1058; https://doi.org/10.1007/s00128-021-03222-7.Suche in Google Scholar PubMed
42. Ahmadzadeh, S., Kassim, A., Abdollahi, Y. Int. J. Electrochem. Sci. 2011, 6, 4749–4759.Suche in Google Scholar
43. Noreen, M., Shahid, M., Iqbal, M. J. Nisar Measurement 2017, 109, 88–99; https://doi.org/10.1016/j.measurement.2017.05.030.Suche in Google Scholar
44. Hassen, E. B., Asmare, A. M. Chem. Int. 2019, 5, 87–96.Suche in Google Scholar
45. Iqbal, M., Nisar, J., Adil, M., Abbas, M., Riaz, M., Tahir, M. A., Younus, M., Shahid, M. Chemosphere 2017, 168, 590–598; https://doi.org/10.1016/j.chemosphere.2016.11.021.Suche in Google Scholar PubMed
46. Ahmadzadeh, S., Rezayi, M., Karimi-Maleh, H., Alias, Y. Measurement 2015, 70, 214–224; https://doi.org/10.1016/j.measurement.2015.04.005.Suche in Google Scholar
47. Sasmaz, A. J. Geochem. Explor. 2020, 214, 106539; https://doi.org/10.1016/j.gexplo.2020.106539.Suche in Google Scholar
48. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297.10.1007/s00128-017-2220-5Suche in Google Scholar PubMed
49. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Suche in Google Scholar
50. Rezayi, M., Heng, L. Y., Kassim, A., Ahmadzadeh, S., Abdollahi, Y., Jahangirian, H. Chem. Cent. J. 2012, 6, 1–6; https://doi.org/10.1186/1752-153x-6-40.Suche in Google Scholar
51. Bukhari, A., Atta, M., Nazir, A., Shahab, M. R., Kanwal, Q., Iqbal, M., Albalawi, H., Alwadai, N. Z. Phys. Chem. 2022, 236, 659–671; https://doi.org/10.1515/zpch-2021-3096.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Combine merits of both sacrificial and impressed current cathodic protection in one system to mitigate chloride-induced corrosion in reinforcement concrete
- Differences in perchlorate adsorption to azobenzene monolayers on gold formed from thioacetate and thiol precursors
- Adsorption kinetics for the removal of toxic Congo red dye by polyaniline and citrus leaves as effective adsorbents
- Ionizing radiation based advanced oxidation process for reactive orange 122 dye degradation and kinetics studies
- Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures
- Theoretical investigation of some 1,2,4-triazole-based molecules synthetized
- Review Article
- Heterogeneous nanocatalyst for biodiesel fuel production: bench scale from waste oil sources