Startseite Enhancing charge transport and photoluminescence characteristics via transition metals doping in ITO thin films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancing charge transport and photoluminescence characteristics via transition metals doping in ITO thin films

  • Ghazi Aman Nowsherwan ORCID logo EMAIL logo , Muhammad Ahmad , Rub Nawaz Bhuttee , Maryam Tahir , Muhammad Azhar , Sabah Haider , Nadia Anwar , Muhammad Bilal , Sabeen Ameen , Syed Sajjad Hussain , Saira Riaz und Shahzad Naseem
Veröffentlicht/Copyright: 9. Februar 2024

Abstract

This study presents the synthesis and characterization of pristine and transition metal (Co, Fe, and Zr)-doped indium tin oxide (ITO) thin films fabricated via RF magnetron sputtering. The effect of transition metal doping on ITO thin films properties was comprehensively examined using numerous spectroscopic and microscopic methods such as XRD, FTIR, and SEM coupled with EDX, UV–visible and PL spectroscopy, and four-probe and JV measurements. The cubic crystal structure of the materials was confirmed through XRD spectroscopy, while FTIR results validated the existence of chemical bonds, signified by sharp peaks at 608 cm−1 and 667 cm−1 in the fingerprint region. SEM imaging revealed a granular-like agglomerated structure, with EDX confirming the elemental composition of the samples. The incorporation of Co, Fe, and Zr ions into ITO is aimed at improving photoconductivity and the optical bandgap, with the ultimate objective of enhancing performance in photovoltaic applications. Our findings showed a significant decrease in optical transmission in the visible spectrum. The bandgap also experienced a minor decrease from 3.67 eV to 3.53 eV. Analysis of the photoluminescence spectra exhibited the majority of emission peaks in the UV region, ascribed to electronic transitions occurring via band-to-band and band-to-impurity interactions within the ITO. Electrical measurements indicated lower resistance, higher current flow, and increased carrier concentration in transition metals–doped ITO compared to the undoped ITO, with Zr-doped ITO exhibiting the highest conductivity and optimal charge flow among all dopants. These promising findings in terms of optical, structural, and electrical attributes signal the potential of these materials for photovoltaic system applications.


Corresponding author: Ghazi Aman Nowsherwan, Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, 54590, Pakistan, E-mail:

Acknowledgments

The authors are grateful to the Director, Centre of Excellence in Solid State Physics, University of the Punjab for providing us with the necessary lab facilities to conduct this research. The authors acknowledge the support provided by Ghulam Ishaq Khan Institute of Engineering Sciences and Technology.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: All data generated or analyzed during this study are included in this published article.

References

[1] A. Stadler, “Transparent conducting oxides—an up-to-date overview,” Materials, vol. 5, no. 4, pp. 661–683, 2012, https://doi.org/10.3390/ma5040661.Suche in Google Scholar PubMed PubMed Central

[2] D. Segev and S.-H. Wei, “Structure-derived electronic and optical properties of transparent conducting oxides,” Phys. Rev. B, vol. 71, no. 12, p. 125129, 2005, https://doi.org/10.1103/physrevb.71.125129.Suche in Google Scholar

[3] B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull., vol. 25, no. 8, pp. 22–27, 2000, https://doi.org/10.1557/mrs2000.147.Suche in Google Scholar

[4] R. A. Afre, N. Sharma, M. Sharon, and M. Sharon, “Transparent conducting oxide films for various applications: a review,” Rev. Adv. Mater. Sci., vol. 53, no. 1, pp. 79–89, 2018, https://doi.org/10.1515/rams-2018-0006.Suche in Google Scholar

[5] T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin solid films, vol. 516, no. 7, pp. 1314–1321, 2008, https://doi.org/10.1016/j.tsf.2007.03.082.Suche in Google Scholar

[6] S.-Y. Lien, A. Nautiyal, and S. J. Lee, “Optoelectronic properties of indium–tin oxide films deposited on flexible and transparent poly (dimethylsiloxane) substrate,” Jpn. J. Appl. Phys., vol. 52, no. 11R, p. 115801, 2013, https://doi.org/10.7567/jjap.52.115801.Suche in Google Scholar

[7] N. Sethupathi, et al.., “Deposition and optoelectronic properties of ITO (In2O3:Sn) thin films by jet nebulizer spray (JNS) pyrolysis technique,” J. Mater. Sci.: Mater. Electron., vol. 23, pp. 1087–1093, 2012, https://doi.org/10.1007/s10854-011-0553-0.Suche in Google Scholar

[8] M. Mazur, et al.., “Effect of thickness on optoelectronic properties of ITO thin films,” Circ. World, vol. 48, no. 2, pp. 149–159, 2022, https://doi.org/10.1108/cw-11-2019-0170.Suche in Google Scholar

[9] M. Girtan, “Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells,” Sol. Energy Mater. Sol. Cells, vol. 100, pp. 153–161, 2012, https://doi.org/10.1016/j.solmat.2012.01.007.Suche in Google Scholar

[10] X. Yan, et al.., “Refractive-index-matched indium–tin-oxide electrodes for liquid crystal displays,” Jpn. J. Appl. Phys., vol. 48, no. 12R, p. 120203, 2009, https://doi.org/10.1143/jjap.48.120203.Suche in Google Scholar

[11] S.-R. Shin, et al.., “Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array,” J. Mater. Chem. C, vol. 6, no. 20, pp. 5444–5452, 2018, https://doi.org/10.1039/c8tc01415a.Suche in Google Scholar

[12] C.-H. Hong, et al.., “Index-matched indium tin oxide electrodes for capacitive touch screen panel applications,” J. Nanosci. Nanotechnol., vol. 13, no. 11, pp. 7756–7759, 2013, https://doi.org/10.1166/jnn.2013.7814.Suche in Google Scholar PubMed

[13] C. Schrage and S. Kaskel, “Flexible and transparent SWCNT electrodes for alternating current electroluminescence devices,” ACS Appl. Mater. Interfaces, vol. 1, no. 8, pp. 1640–1644, 2009, https://doi.org/10.1021/am9002588.Suche in Google Scholar PubMed

[14] N.-W. Pu, et al.., “Investigation of the optoelectronic properties of Ti-doped indium tin oxide thin film,” Materials, vol. 8, no. 9, pp. 6471–6481, 2015, https://doi.org/10.3390/ma8095316.Suche in Google Scholar PubMed PubMed Central

[15] X. Zhao, H. Li, S. Jiang, W. Zhang, and H. Jiang, “Effect of nitrogen doping on the thermoelectric properties of ITO-In2O3 thin film thermocouples,” Thin Solid Films, vol. 629, pp. 1–5, 2017, https://doi.org/10.1016/j.tsf.2017.03.044.Suche in Google Scholar

[16] D. Chakraborty and S. Kaleemulla, “No signature of room temperature ferromagnetism in Fe-doped ITO thin films,” J. Supercond. Novel Magn., vol. 32, pp. 729–737, 2019, https://doi.org/10.1007/s10948-018-4745-1.Suche in Google Scholar

[17] F. Aragón, J. Coaquira, S. da Silva, R. Cohen, D. Pacheco-Salazar, and L. Nagamine, “Fe content effects on structural, electrical and magnetic properties of Fe-doped ITO polycrystalline powders,” J. Alloys Compd., vol. 867, p. 158866, 2021, https://doi.org/10.1016/j.jallcom.2021.158866.Suche in Google Scholar

[18] J. Lee, “Effects of oxygen concentration on the properties of sputtered SnO2: Sb films deposited at low temperature,” Thin Solid Films, vol. 516, no. 7, pp. 1386–1390, 2008, https://doi.org/10.1016/j.tsf.2007.05.027.Suche in Google Scholar

[19] T. Chaudhuri, A. De, and P. K. Biswas, “Development of sol-gel fluorine doped tin oxide film on glass,” Trans. Indian Ceram. Soc., vol. 62, no. 4, pp. 208–212, 2003, https://doi.org/10.1080/0371750x.2003.11012111.Suche in Google Scholar

[20] M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi, “The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique,” J. Phys. D: Appl. Phys., vol. 37, no. 8, p. 1248, 2004, https://doi.org/10.1088/0022-3727/37/8/014.Suche in Google Scholar

[21] C. Liu, et al.., “Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings,” Opt. Commun., vol. 464, p. 125496, 2020, https://doi.org/10.1016/j.optcom.2020.125496.Suche in Google Scholar

[22] Y. Huang, Z. Ji, and C. Chen, “Preparation and characterization of p-type transparent conducting tin-gallium oxide films,” Appl. Surf. Sci., vol. 253, no. 11, pp. 4819–4822, 2007, https://doi.org/10.1016/j.apsusc.2006.10.043.Suche in Google Scholar

[23] G. Turgut, et al.., “Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films,” Superlattices Microstruct., vol. 56, pp. 107–116, 2013, https://doi.org/10.1016/j.spmi.2013.01.004.Suche in Google Scholar

[24] C. De Meyer, et al.., “Structure and phase transition of Sn-substituted Zr (1−x) SnxW2O8,” J. Mater. Chem., vol. 14, no. 20, pp. 2988–2994, 2004, https://doi.org/10.1039/b407851a.Suche in Google Scholar

[25] N. N. K. Reddy, H. S. Akkera, M. C. Sekhar, and S.-H. Park, “Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells,” Appl. Phys. A, vol. 123, pp. 1–7, 2017, https://doi.org/10.1007/s00339-017-1391-6.Suche in Google Scholar

[26] A. Khan, F. Rahman, A. Ahad, and P. Alvi, “Investigation of transport phenomenon and magnetic behavior of Fe doped In2O3,” Phys. B, vol. 592, p. 412282, 2020, https://doi.org/10.1016/j.physb.2020.412282.Suche in Google Scholar

[27] D. Chakraborty, S. Kaleemulla, N. M. Rao, and G. V. Rao, “Synthesis and magnetic properties of (Fe, Sn) co-doped in 2O3 nanoparticles,” J. Mater. Sci.: Mater. Electron., vol. 28, pp. 18977–18985, 2017, https://doi.org/10.1007/s10854-017-7851-0.Suche in Google Scholar

[28] D. Chakraborty, N. M. Rao, G. V. Rao, S. Hainathbabu, S. Kaleemulla, and C. Krishnamoorthi, “Ferromagnetic and photoluminescence properties of Fe doped indium-tin-oxide nanoparticles synthesised by solid state reaction,” Mech. Mater. Sci. Eng. J., vol. 9, pp. 1–6, 2017.Suche in Google Scholar

[29] A. Hakimi, et al.., “Origin of magnetism in cobalt-doped indium tin oxide thin films,” Phys. Rev. B, vol. 82, no. 14, p. 144429, 2010, https://doi.org/10.1103/physrevb.82.144429.Suche in Google Scholar

[30] J. Stankiewicz, F. Villuendas, and J. Bartolomé, “Magnetic behavior of sputtered Co-doped indium-tin oxide films,” Phys. Rev. B, vol. 75, no. 23, p. 235308, 2007, https://doi.org/10.1103/physrevb.75.235308.Suche in Google Scholar

[31] A. El Sayed, S. Taha, M. Shaban, and G. Said, “Tuning the structural, electrical and optical properties of tin oxide thin films via cobalt doping and annealing,” Superlattices Microstruct., vol. 95, pp. 1–13, 2016, https://doi.org/10.1016/j.spmi.2016.04.017.Suche in Google Scholar

[32] H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition,” Appl. Phys. Lett., vol. 76, no. 19, pp. 2740–2742, 2000, https://doi.org/10.1063/1.126461.Suche in Google Scholar

[33] B. Zhang, X. Dong, X. Xu, P. Zhao, and J. Wu, “Characteristics of zirconium-doped indium tin oxide thin films deposited by magnetron sputtering,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 10, pp. 1224–1229, 2008, https://doi.org/10.1016/j.solmat.2008.04.019.Suche in Google Scholar

[34] H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia,” J. Appl. Phys., vol. 91, no. 6, pp. 3547–3550, 2002, https://doi.org/10.1063/1.1448873.Suche in Google Scholar

[35] R. Álvarez, et al.., “Morphological evolution of pulsed laser deposited ZrO2 thin films,” J. Appl. Phys., vol. 107, no. 5, 2010, https://doi.org/10.1063/1.3318604.Suche in Google Scholar

[36] Y.-y. Liu, et al.., “Electrical and optical properties dependence on evolution of roughness and thickness of Ga: ZnO films on rough quartz substrates,” Surf. Coat. Technol., vol. 205, no. 11, pp. 3530–3534, 2011, https://doi.org/10.1016/j.surfcoat.2010.12.029.Suche in Google Scholar

[37] A. Kutlimratov, M. Zufarov, R. Kabulov, and M. Xajiyev, “Structial, electrophysical, and optical properties of ITO films produced by the modified CVD method,” Appl. Sol. Energy, vol. 58, no. 4, pp. 497–502, 2022, https://doi.org/10.3103/s0003701x22040107.Suche in Google Scholar

[38] F. Alam and D. J. Lewis, “Synthesis of indium oxide microparticles using aerosol assisted chemical vapour deposition,” RSC Adv., vol. 10, no. 38, pp. 22487–22490, 2020, https://doi.org/10.1039/d0ra02678f.Suche in Google Scholar PubMed PubMed Central

[39] A. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, p. 978, 1939, https://doi.org/10.1103/physrev.56.978.Suche in Google Scholar

[40] E. Celik, U. Aybarc, M. Ebeoglugil, I. Birlik, and O. Culha, “ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties,” J. Sol. Gel Sci. Technol., vol. 50, pp. 337–347, 2009, https://doi.org/10.1007/s10971-009-1931-4.Suche in Google Scholar

[41] R.-Y. Yang, C.-J. Chu, Y.-M. Peng, and H.-J. Chueng, “Effects of organic compounds on microstructure, optical, and electrical properties of ITO thin films prepared by dip-coating method,” Adv. Mater. Sci. Eng., vol. 2012, pp. 1–7, 2012. https://doi.org/10.1155/2012/741561.Suche in Google Scholar

[42] M. Moradi-Haji Jafan, M.-R. Zamani-Meymian, R. Rahimi, and M. Rabbani, “The effect of solvents and the thickness on structural, optical and electrical properties of ITO thin films prepared by a sol–gel spin-coating process,” J. Nanostruct. Chem., vol. 4, pp. 1–9, 2014.10.1007/s40097-014-0089-ySuche in Google Scholar

[43] A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to read and interpret FTIR spectroscope of organic material,” Indones. J. Sci. Technol., vol. 4, no. 1, pp. 97–118, 2019, https://doi.org/10.17509/ijost.v4i1.15806.Suche in Google Scholar

[44] M. Thirumoorthi and J. T. J. Prakash, “Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique,” J. Asian Ceram. Soc., vol. 4, no. 1, pp. 124–132, 2016, https://doi.org/10.1016/j.jascer.2016.01.001.Suche in Google Scholar

[45] S. Kumar, F. Singh, and A. Kapoor, “Study of valence band tailing effect induced by electronic excitations in nanocrystalline cadmium oxide thin films,” Optik, vol. 127, no. 4, pp. 2055–2058, 2016, https://doi.org/10.1016/j.ijleo.2015.11.096.Suche in Google Scholar

[46] G. A. Nowsherwan, et al.., “Preparation and numerical optimization of TiO2:CdS thin films in double perovskite solar cell,” Energies, vol. 16, no. 2, p. 900, 2023, https://doi.org/10.3390/en16020900.Suche in Google Scholar

[47] G. T. Chavan, et al.., “A brief review of transparent conducting oxides (TCO): the influence of different deposition techniques on the efficiency of solar cells,” Nanomaterials, vol. 13, no. 7, p. 1226, 2023, https://doi.org/10.3390/nano13071226.Suche in Google Scholar PubMed PubMed Central

[48] N. Masdan and A. H. Ali, “Characterization of electrical, optical and topological properties of ITO thin films for solar cells application,” in Proceedings of the 7th international conference on the applications of science and mathematics 2021: Sciemathic 2021, Springer, 2022, pp. 57–63.10.1007/978-981-16-8903-1_6Suche in Google Scholar

[49] A. Akl, H. Kamal, and K. Abdel-Hady, “Fabrication and characterization of sputtered titanium dioxide films,” Appl. Surf. Sci., vol. 252, no. 24, pp. 8651–8656, 2006, https://doi.org/10.1016/j.apsusc.2005.12.001.Suche in Google Scholar

[50] K. Saw, N. Aznan, F. Yam, S. Ng, and S. Pung, “New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films,” PloS one, vol. 10, no. 10, p. e0141180, 2015, https://doi.org/10.1371/journal.pone.0141180.Suche in Google Scholar PubMed PubMed Central

[51] K. D. A. Kumar, et al.., “Effect of solvent on the key properties of Al doped ZnO films prepared by nebulized spray pyrolysis technique,” Mater. Chem. Phys., vol. 212, pp. 167–174, 2018, https://doi.org/10.1016/j.matchemphys.2018.03.035.Suche in Google Scholar

[52] A. Shakoor, et al.., “Fabrication and characterization of TiO2: ZnO thin films as electron transport material in perovskite solar cell (PSC),” Phys. B: Condens. Matter, vol. 89, no. 414690, pp. 1–9, 2023. https://doi.org/10.1016/j.physb.2023.414690.Suche in Google Scholar

[53] S. Ilican, M. Caglar, and Y. Caglar, “Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method,” Mater. Sci., vol. 25, no. 3, pp. 709–718, 2007.Suche in Google Scholar

[54] P. Sahay, R. Nath, and S. Tewari, “Optical properties of thermally evaporated CdS thin films,” Cryst. Res. Technol. J. Exp. Ind. Crystallogr., vol. 42, no. 3, pp. 275–280, 2007, https://doi.org/10.1002/crat.200610812.Suche in Google Scholar

[55] A. K. Isiyaku, A. H. Ali, and N. Nayan, “Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact,” Beilstein J. Nanotechnol., vol. 11, no. 1, pp. 695–702, 2020, https://doi.org/10.3762/bjnano.11.57.Suche in Google Scholar PubMed PubMed Central

[56] M. Shkir, V. Ganesh, S. AlFaify, and I. Yahia, “Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films,” J. Mater. Sci.: Mater. Electron., vol. 28, pp. 10573–10581, 2017, https://doi.org/10.1007/s10854-017-6831-8.Suche in Google Scholar

[57] L. Xue, C. Zhang, H. He, and Y. Teraoka, “Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst,” Appl. Catal. B: Environ., vol. 75, nos. 3–4, pp. 167–174, 2007, https://doi.org/10.1016/j.apcatb.2007.04.013.Suche in Google Scholar

[58] A. A. El-Haija and K. Wishah, “Basic optical properties: effective optical constants, skin depth, absorption coefficients and optical conductivity of an ultrathin Ag-SiO superlattice identity period,” Optica Appl., vol. 31, no. 4, pp. 739–749, 2001.Suche in Google Scholar

[59] D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The influences of the front work function and intrinsic bilayer (i1, i2) on pin based amorphous silicon solar cell’s performances: a numerical study,” Cogent Eng., vol. 9, no. 1, p. 2110726, 2022, https://doi.org/10.1080/23311916.2022.2110726.Suche in Google Scholar

[60] A. Umar, B. Karunagaran, E. Suh, and Y. Hahn, “Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation,” Nanotechnology, vol. 17, no. 16, p. 4072, 2006, https://doi.org/10.1088/0957-4484/17/16/013.Suche in Google Scholar PubMed

[61] X. De-Sheng, G. Yu, L. Wen-Jing, S. Ming-Su, and L. Zai-Wen, “Photoluminescence property of Co3O4 nanowires,” Chin. Phys. Lett., vol. 24, no. 6, p. 1756, 2007, https://doi.org/10.1088/0256-307x/24/6/089.Suche in Google Scholar

[62] R. Al-Tuwirqi, A. A. Al-Ghamdi, N. A. Aal, A. Umar, and W. E. Mahmoud, “Facile synthesis and optical properties of Co3O4 nanostructures by the microwave route,” Superlattices Microstruct., vol. 49, no. 4, pp. 416–421, 2011, https://doi.org/10.1016/j.spmi.2010.12.010.Suche in Google Scholar

[63] D. Shi, M. Sadat, A. W. Dunn, and D. B. Mast, “Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications,” Nanoscale, vol. 7, no. 18, pp. 8209–8232, 2015, https://doi.org/10.1039/c5nr01538c.Suche in Google Scholar PubMed

[64] N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F. A. Alharthi, and V. Mohana, “Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: characterization, photocatalytic degradation and antibacterial activities,” Inorg. Chem. Commun., vol. 127, p. 108507, 2021, https://doi.org/10.1016/j.inoche.2021.108507.Suche in Google Scholar

[65] A. Charanpahari, S. G. Ghugal, S. S. Umare, and R. Sasikala, “Mineralization of malachite green dye over visible light responsive bismuth doped TiO2–ZrO2 ferromagnetic nanocomposites,” New J. Chem., vol. 39, no. 5, pp. 3629–3638, 2015, https://doi.org/10.1039/c4nj01618a.Suche in Google Scholar

[66] B. Neppolian, Q. Wang, H. Yamashita, and H. Choi, “Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process,” Appl. Catal., A, vol. 333, no. 2, pp. 264–271, 2007, https://doi.org/10.1016/j.apcata.2007.09.026.Suche in Google Scholar

[67] M. Premkumar and S. Vadivel, “Effect of annealing temperature on structural, optical and humidity sensing properties of indium tin oxide (ITO) thin films,” J. Mater. Sci.: Mater. Electron., vol. 28, pp. 8460–8466, 2017, https://doi.org/10.1007/s10854-017-6566-6.Suche in Google Scholar

[68] D. Chakraborty, K. C. Kumar, S. Kaleemulla, and I. Omkaram, “Synthesis and characterization of Fe doped ITO nanoparticles,” in AIP Conference Proceedings, vol. 2221, no. 1, AIP Publishing, 2020.10.1063/5.0003080Suche in Google Scholar

[69] P. Londhe, A. Athawale, and N. B. Chaure, “Sol-gel-derived transparent metal oxide flexible field effect transistors,” Environ. Sci. Pollut. Res., vol. 28, pp. 3928–3941, 2021, https://doi.org/10.1007/s11356-020-10459-y.Suche in Google Scholar PubMed

[70] M. Şahin, H. Şafak, N. Tuğluoğlu, and S. Karadeniz, “Temperature dependence of current–voltage characteristics of Ag/p-SnS Schottky barrier diodes,” Appl. Surf. Sci., vol. 242, nos. 3–4, pp. 412–418, 2005, https://doi.org/10.1016/j.apsusc.2004.09.017.Suche in Google Scholar

Received: 2023-08-01
Accepted: 2024-01-21
Published Online: 2024-02-09
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0214/html
Button zum nach oben scrollen