Startseite Stability analysis of a delayed predator–prey model with nonlinear harvesting efforts using imprecise biological parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability analysis of a delayed predator–prey model with nonlinear harvesting efforts using imprecise biological parameters

  • Amit K. Pal EMAIL logo
Veröffentlicht/Copyright: 13. Juli 2021

Abstract

In this paper, the dynamical behaviors of a delayed predator–prey model (PPM) with nonlinear harvesting efforts by using imprecise biological parameters are studied. A method is proposed to handle these imprecise parameters by using a parametric form of interval numbers. The proposed PPM is presented with Crowley–Martin type of predation and Michaelis–Menten type prey harvesting. The existence of various equilibrium points and the stability of the system at these equilibrium points are investigated. Analytical study reveals that the delay model exhibits a stable limit cycle oscillation. Computer simulations are carried out to illustrate the main analytical findings.


Corresponding author: Amit K. Pal, Department of Mathematics, S. A. Jaipuria College, Kolkata 700005, India, E-mail:

Acknowledgments

The author is grateful to the learned reviewers and the Editor for their careful reading, valuable comments and helpful suggestions, which have helped him to improve the presentations of this work significantly.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. J. Lotka, Elements Of Physical Biology, Baltimore, Williams & Wilkins, 1925.Suche in Google Scholar

[2] V. Volterra, Leconssen la Theorie Mathematique de la Leitte Pou Lavie, Paris, Gauthier-Villars, 1931.Suche in Google Scholar

[3] K. S. Chaudhury and S. Saha Ray, “On the combined harvesting of prey-predator system,” J. Biol. Syst., vol. 4, no. 3, pp. 373–389, 1996.10.1142/S0218339096000259Suche in Google Scholar

[4] S. Djilali and S. Bentout, “Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior,” Math. Methods Appl. Sci., vol. 44, no. 11, pp. 9128–9142, 2021. https://doi.org/10.1002/mma.7340.Suche in Google Scholar

[5] M. E. M. Hacini, D. Hammoudi, S. Djilali, and S. Bentout, “Optimal harvesting and stability of a predator-prey model for fish populations with schooling behavior,” Theor. Biosci., vol. 140, no. 2, pp. 225–239, 2021. https://doi.org/10.1007/s12064-021-00347-5.Suche in Google Scholar

[6] P. Lenzini and J. Rebaza, “Nonconstant predator harvesting on ratio-dependent predator-prey models,” Appl. Math. Sci., vol. 4, no. 16, pp. 791–803, 2010.Suche in Google Scholar

[7] D. Manna, A. Maiti, and G. P. Samanta, “Analysis of a predator-prey model for exploited fish populations with schooling behaviour,” Appl. Math. Comput., vol. 317, pp. 35–48, 2018. https://doi.org/10.1016/j.amc.2017.08.052.Suche in Google Scholar

[8] N. Zhang, F. Chen, Q. Su, and T. Wu, “Dynamic behaviors of a harvesting Leslie-Gower predator-prey model,” Discrete Dynam Nat. Soc., vol. 2011, p. 473949, 2011. https://doi.org/10.1155/2011/473949.Suche in Google Scholar

[9] E. Berreta and Y. Kuang, “Global analysis in some delayed ratio-dependent predator -prey system,” Nonlinear Anal., vol. 32, pp. 381–408, 1998.10.1016/S0362-546X(97)00491-4Suche in Google Scholar

[10] L. Haiyin and Y. Takeuchi, “Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response,” J. Math. Anal. Appl., vol. 374, pp. 644–654, 2011.10.1016/j.jmaa.2010.08.029Suche in Google Scholar

[11] S. B. Hsu, T. B. Hwang, and Y. Kuang, “Global analysis of the Micaelis-Menten type ratio-dependent predator-prey system,” J. Math. Biol., vol. 42, pp. 489–506, 2001. https://doi.org/10.1007/s002850100079.Suche in Google Scholar PubMed

[12] A. Oaten and W. Murdoch, “Functional response and stability in predator-prey system,” Am. Nat., vol. 109, pp. 289–298, 1975. https://doi.org/10.1086/282998.Suche in Google Scholar

[13] D. Xiao and S. Ruan, “Global dynamics of a ratio-dependent predator-prey system,” J. Math. Biol., vol. 43, pp. 268–290, 2001. https://doi.org/10.1007/s002850100097.Suche in Google Scholar PubMed

[14] R. K. Upadhyay and R. K. Naji, “Dynamics of three species food chain model with Crowley-Martin type functional response,” Chaos, Solit. Fractals, vol. 42, pp. 1337–1346, 2009. https://doi.org/10.1016/j.chaos.2009.03.020.Suche in Google Scholar

[15] P. H. Crowley and E. K. Martin, “Functional response and interference within and between year classes of a dragently population,” J. N. Amer. Benth. Soc., vol. 8, pp. 211–221, 1989. https://doi.org/10.2307/1467324.Suche in Google Scholar

[16] Q. Dong, W. Ma, and M. Sun, “The asymptotic behavior of a Chemostat model with Crowley-Martin type functional response and time delays,” J. Math. Chem., vol. 51, pp. 1231–1248, 2013. https://doi.org/10.1007/s10910-012-0138-z.Suche in Google Scholar

[17] A. Mondal, A. K. Pal, and G. P. Samanta, “Stability and bifurcation analysis of a delayed three species food chain model with Crowley-Martin response function,” Appl. Appl. Math.: Int. J., vol. 13, no. 2, pp. 709–749, 2018.Suche in Google Scholar

[18] G. T. Sklaski and J. F. Gillian, “Functional response with predator interference: variable alternative to Holling type II model,” Ecology, vol. 82, pp. 3083–3092, 2001.10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2Suche in Google Scholar

[19] R. K. Upadhyay, S. N. Raw, and V. Rai, “Dynamic complexities in a tri-tropic food chain model with Holling type II and Crowley- Martin functional response,” Nonlinear Anal. Model Contr., vol. 15, pp. 361–375, 2010. https://doi.org/10.15388/na.15.3.14331.Suche in Google Scholar

[20] C. W. Clark, Mathematical Bioeconomics : The Optimal Management Of Renewable Resources, Newyork, Wiley, 1976.Suche in Google Scholar

[21] C. W. Clark, Bioeconomic Modeling and Fisheries Management, New York, Wiley, 1985.Suche in Google Scholar

[22] D. S. Shiffman and D. Hammerschlag, “Preferred conservation policies of shark researchers,” Conserv. Biol., vol. 30, pp. 805–815, 2016. https://doi.org/10.1111/cobi.12668.Suche in Google Scholar

[23] J. Wang, H. Cheng, H. Liu, et al.., “Periodic solution and control optimization of a prey-predator model with two types of harvesting,” Adv. Differ. Equ., vol. 41, 2018. https://doi.org/10.1186/s13662-018-1499-9.Suche in Google Scholar

[24] R. Yuan, W. Jiang, and Y. Wang, “Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting,” J. Math. Anal. Appl., vol. 422, no. 2, pp. 1072–1090, 2015. https://doi.org/10.1016/j.jmaa.2014.09.037.Suche in Google Scholar

[25] T. Das, R. N. Mukherjee, and K. S. Chaudhury, “Bioeconomic harvesting of a prey-predator fishery,” J. Biol. Dynam., vol. 3, no. 5, pp. 447–462, 2009. https://doi.org/10.1080/17513750802560346.Suche in Google Scholar

[26] D. P. Hu and H. J. Cao, “Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting,” Nonlinear Anal. R. World Appl., vol. 33, pp. 58–82, 2017. https://doi.org/10.1016/j.nonrwa.2016.05.010.Suche in Google Scholar

[27] R. P. Gupta and P. Chandra, “Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting,” J. Math. Anal. Appl., vol. 398, pp. 278–295, 2003.10.1016/j.jmaa.2012.08.057Suche in Google Scholar

[28] M. MacDonald, Biological Delay System: Linear Stability Theory, Cambridge, Cambridge University Press, 1989.Suche in Google Scholar

[29] C. Celik, “The stability and Hopf bifurcation for a predator-prey system with time delay,” Chaos, Solitons Fractals, vol. 37, no. 1, pp. 87–99, 2008. https://doi.org/10.1016/j.chaos.2007.10.045.Suche in Google Scholar

[30] Y. Chen, J. Yu, and C. Sun, “Stability and Hopf bifurcation analysis in a three-level food chain system with delay,” Chaos, Solit. Fractals, vol. 31, no. 3, pp. 683–694, 2007. https://doi.org/10.1016/j.chaos.2005.10.020.Suche in Google Scholar

[31] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, New York, Academic Press, 1993.Suche in Google Scholar

[32] A. Maiti, A. K. Pal, and G. P. Samanta, “Effect of time-delay on a food chain model,” Appl. Math. Comput., vol. 200, pp. 189–203, 2008. https://doi.org/10.1016/j.amc.2007.11.011.Suche in Google Scholar

[33] R. Xua, Q. Gan, and Z. Ma, “Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay,” J. Comput. Appl. Math., vol. 230, pp. 187–203, 2009. https://doi.org/10.1016/j.cam.2008.11.009.Suche in Google Scholar

[34] R. C. Bassanezi, L. C. Barros, and A. Tonelli, “Attractors and asymptotic stability for fuzzy dynamical systems,” Fuzzy Set Syst., vol. 113, pp. 473–483, 2000. https://doi.org/10.1016/s0165-0114(98)00142-0.Suche in Google Scholar

[35] M. Peixoto, L. C. Barros, and R. C. Bassanezi, “Predator-prey fuzzy model,” Ecol. Model., vol. 214, pp. 39–44, 2008. https://doi.org/10.1016/j.ecolmodel.2008.01.009.Suche in Google Scholar

[36] M. Guo, X. Xu, and R. Li, “Impulsive functional differential inclusions and fuzzy populations models,” Fuzzy Set Syst., vol. 138, pp. 601–615, 2003. https://doi.org/10.1016/s0165-0114(02)00522-5.Suche in Google Scholar

[37] A. K. Pal, P. Dolai, and G. P. Samanta, “Dynamics of a delayed competitive system Affected by toxic substances with imprecise biological parameters,” Filomat, vol. 31, no. 16, pp. 5271–5293, 2017, https://doi.org/10.2298/FIL1716271P.Suche in Google Scholar

[38] Jana, D., Dolai, P., Pal, A. K., Samanta, G. P., “On the stability and Hopf-bifurcation of a multi-delayed competitive population system affected by toxic substances with imprecise biological parameters,” Model. Earth. Syst. Environ., vol. 2, p. 110, 2016. https://doi.org/10.1007/s40808-016-0156-0.Suche in Google Scholar

[39] D. Pal, G. S. Mahapatra, and G. P. Samanta, “A proportional harvesting dynamical model with fuzzy intrinsic growth rate and harvesting quantity,” Pac. Asian J. Math., vol. 6, pp. 199–213, 2012.Suche in Google Scholar

[40] D. Pal, G. S. Mahapatra, and G. P. Samanta, “Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model,” Math. Biosci., vol. 241, pp. 181–187, 2013. https://doi.org/10.1016/j.mbs.2012.11.007.Suche in Google Scholar PubMed

[41] S. Bentout, S. Djilali, and S. Kumar, “Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model,” Phys. Stat. Mech. Appl., vol. 572, p. 125840, 2021. https://doi.org/10.1016/j.physa.2021.125840.Suche in Google Scholar

[42] S. Djilali and S. Bentout, “Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior,” Acta Appl. Math., vol. 169, pp. 125–143, 2020. https://doi.org/10.1007/s10440-019-00291-z.Suche in Google Scholar

[43] S. Djilali, S. Bentout, B. Ghanbari, and S. Kumar, “Spatial patterns in a vegetation model with internal competition and feedback regulation,” Eur. Phys. J. Plus, vol. 136, p. 256, 2021. https://doi.org/10.1140/epjp/s13360-021-01251-z.Suche in Google Scholar

[44] J. K. Hale, Theory Of Functional Differential Equations, Heidelberg, Springer, 1977.10.1007/978-1-4612-9892-2Suche in Google Scholar

[45] H. Freedman and V. S. H. Rao, “The trade-off between mutual interference and time lags in predator-prey systems,” Bull. Math. Biol., vol. 45, pp. 991–1004, 1983. https://doi.org/10.1007/bf02458826.Suche in Google Scholar

Received: 2021-05-14
Revised: 2021-06-24
Accepted: 2021-06-25
Published Online: 2021-07-13
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0131/pdf
Button zum nach oben scrollen