Electronic and magnetic properties of Fe-doped GaN: first-principle calculations
-
Adam S. Abdalla
, Muhammad Sheraz Khan , Suliman Alameen , Mohamed Hassan Eisa und Osamah Aldaghri
Abstract
We have systematically studied the effect of Fe co-doped on electronic and magnetic properties of wurtzite gallium nitride (GaN) based on the framework of density functional theory (DFT). It is found that GaN doped with Fe at Ga site is more stable than that at N-site. We calculate the electronic structure of pure and single Fe doped GaN within GGA and GGA + U method and find that Fe doped GaN is a magnetic semiconductor with the total magnetization of 5μB. The magnetic coupling between Fe spins in Fe-doped GaN is an antiferromagnetic (AFM) under the super-exchange mechanism.
Funding source: This is a private work , so no fund received.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys., vol. 64, p. R29, 1988, https://doi.org/10.1063/1.341700.Suche in Google Scholar
[2] K. Ando, “Seeking room-temperature ferromagnetic semiconductors,” Science, vol. 312, p. 183, 2006, https://doi.org/10.1126/science.1125461.Suche in Google Scholar
[3] M. Belkhouane, S. Amari, A. Yakoubi, et al.., “First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5,” J. Magn. Magn Mater., vol. 377, p. 211, 2015, https://doi.org/10.1016/j.jmmm.2014.10.094.Suche in Google Scholar
[4] L. Lin, J. Huang, H. Jia, L. Zhu, and H. Tao, “Magnetism in transition metal (Fe, Ni) co-doped 4H-SiC: a first-principles study,” Phys. Scripta, vol. 95, p. 045808, 2020, https://doi.org/10.1088/1402-4896/ab6c40.Suche in Google Scholar
[5] H. Saadaoui, X. Luo, Z. Salman, et al.., “Intrinsic ferromagnetism in the diluted magnetic semiconductor Co:TiO2,” Phys. Rev. Lett., vol. 117, p. 227202, 2016, https://doi.org/10.1103/physrevlett.117.227202.Suche in Google Scholar
[6] B. Chakraborty, P. K. Nandi, Y. Kawazoe, and L. M. Ramaniah, “Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: a density functional theory study,” Phys. Rev. B, vol. 97, p. 184411, 2018, https://doi.org/10.1103/physrevb.97.184411.Suche in Google Scholar
[7] B. A. Davis, B. Chakraborty, N. Kalarikkal, and L. M. Ramaniah, “Room temperature ferromagnetism in carbon doped MoO3 for spintronic applications: a DFT study,” J. Magn. Magn Mater., vol. 502, p. 166503, 2020, https://doi.org/10.1016/j.jmmm.2020.166503.Suche in Google Scholar
[8] B. Chakraborty and L. M. Ramaniah, “Room temperature d0 ferromagnetism in hole doped Y2O3: widening the choice of host to tailor DMS,” J. Phys. Condens. Matter, vol. 28, p. 336001, 2016, https://doi.org/10.1088/0953-8984/28/33/336001.Suche in Google Scholar
[9] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and E. D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science, vol. 287, no. 5455, p. 1019, 2000, https://doi.org/10.1126/science.287.5455.1019.Suche in Google Scholar
[10] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, et al.., “Room temperature ferromagnetic properties of (Ga, Mn) N,” Appl. Phys. Lett., vol. 79, p. 3473, 2001, https://doi.org/10.1063/1.1419231.Suche in Google Scholar
[11] P. Sharma, A. Gupta, K. V. Rao, et al..., “Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO,” Nat. Mater., vol. 2, no. 10, p. 673, 2003, https://doi.org/10.1038/nmat984.Suche in Google Scholar
[12] N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, and F. Gervais, “Ferromagnetism in transition-metal-doped TiO2 thin films,” Phys. Rev. B, vol. 70, p. 195204, 2004, https://doi.org/10.1103/physrevb.70.195204.Suche in Google Scholar
[13] M. A. Kamran, R. Liu, L. J. Shi, et al.., “Tunable emission properties by ferromagnetic coupling Mn (II) aggregates in Mn-doped CdS microbelts/nanowires,” Nanotechnology, vol. 25, no. 38, p. 385201, 2014, https://doi.org/10.1088/0957-4484/25/38/385201.Suche in Google Scholar
[14] A. Haury, A. Wasiela, A. Arnoult, et al.., “Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulation-doped CdMnTe quantum wells,” Phys. Rev. Lett., vol. 79, p. 511, 1997, https://doi.org/10.1103/physrevlett.79.511.Suche in Google Scholar
[15] M. Rais-Zadeh, V. J. Gokhale, A. Ansari, et al.., “Gallium nitride as an electromechanical material,” J. Microelectron. Syst., vol. 23, no. 6, p. 1252, 2014, https://doi.org/10.1109/jmems.2014.2352617.Suche in Google Scholar
[16] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, and A. Zubrilov, Semiconductor Materials GaN, InN, SiC, SiGe, New York, John Wiley & Sons, Inc., 2001.Suche in Google Scholar
[17] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, p. 1687, 1994, https://doi.org/10.1063/1.111832.Suche in Google Scholar
[18] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, no. 5379, p. 956, 1998, https://doi.org/10.1126/science.281.5379.956.Suche in Google Scholar
[19] W. A. Prabowo, F. Fathurrahman, A. Melati, and H. K. Dipojono, “The investigation of electronic structure of transition metal doped TiO2 for diluted magnetic semiconductor applications: A first principle study,” Proc. Eng., vol. 170, pp. 141–147, 2017.10.1016/j.proeng.2017.03.032Suche in Google Scholar
[20] G. X. Chen, D. D. Wang, J. Q. Wen, A. P. Yang, and J. M. Zhang, “Structural, electronic, and magnetic properties of 3d transition metal doped GaN nanosheet: a first‐principles study,” Int. J. Quant. Chem., vol. 116, no. 13, p. 1000, 2016, https://doi.org/10.1002/qua.25118.Suche in Google Scholar
[21] H. X. Liu, S. Y. Wu, R. K. Singh, et al.., “Observation of ferromagnetism above 900 K in Cr–GaN and Cr–AlN,” Appl. Phys. Lett., vol. 85, p. 4076, 2004, https://doi.org/10.1063/1.1812581.Suche in Google Scholar
[22] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, p. 1758, 1999, https://doi.org/10.1103/physrevb.59.1758.Suche in Google Scholar
[23] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, p. 558, 1993, https://doi.org/10.1103/physrevb.47.558.Suche in Google Scholar
[24] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, p. 15, 1996, https://doi.org/10.1016/0927-0256(96)00008-0.Suche in Google Scholar
[25] Y. Wang and J. P. Perdew, “Spin scaling of the electron-gas correlation energy in the high-density limit,” Phys. Rev. B, vol. 43, p. 8911, 1991, https://doi.org/10.1103/physrevb.43.8911.Suche in Google Scholar
[26] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, p. 3865, 1996, https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar
[27] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys., vol. 118, p. 8207, 2003, https://doi.org/10.1063/1.1564060.Suche in Google Scholar
[28] A. Fleszar and W. Hanke, “Electronic structure of IIB−VI semiconductors in the GW approximation,” Phys. Rev. B, vol. 71, p. 045207, 2005, https://doi.org/10.1103/physrevb.71.045207.Suche in Google Scholar
[29] M. S. Khan, L. Shi, and B. Zou, “First principle calculations on electronic, magnetic and optical properties of Mn doped and N co-doped CdS,” Mater. Res. Express, vol. 6, no. 11, p. 116126, 2019, https://doi.org/10.1088/2053-1591/ab4e40.Suche in Google Scholar
[30] G. Murali, R. D. Amaranatha, B. Poornaprakash, R. P. Vijayalakshmi, and R. N. Madhusudhana, “Dopant induced room temperature ferromagnetism in Fe-Doped CdS nanoparticles,” Adv. Mater. Res., vol. 584, pp. 78–181, 2012, https://doi.org/10.4028/www.scientific.net/amr.584.178.Suche in Google Scholar
[31] A. Nabi, Z. Akhtar, T. Iqbal, A. Ali, and M. A. Javid, “The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS Mn:Cr:CdS: first principles calculations,” J. Semiconduct., vol. 38, no. 7, p. 073001, 2017, https://doi.org/10.1088/1674-4926/38/7/073001.Suche in Google Scholar
[32] A. Nabi, “The electronic and the magnetic properties of Mn doped wurtzite CdS: First principles calculations,” Comput. Mater. Sci., vol. 1, no. Part A, pp. 210–218, 2016.10.1016/j.commatsci.2015.10.039Suche in Google Scholar
[33] G. Yao, G. Fan, S. Zheng, et al.., “The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS Mn:Cr:CdS: first principles calculations,” “First-principles analysis on V-doped GaN,” Opt. Mater., vol. 34, pp. 1593–1597, 2012, https://doi.org/10.1016/j.optmat.2012.04.001.Suche in Google Scholar
[34] P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, and M. Scheffler, “Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN,” Phys. Rev. B, vol. 77, p. 075202, 2008, https://doi.org/10.1103/physrevb.77.075202.Suche in Google Scholar
[35] M. S. Khan, L. Shi, H. Ullah, X. Yang, and B. Zou, “Ab initio study of optoelectronic and magnetic properties of Mn-doped ZnS with and without vacancy defects,” J. Phys. Condens. Matter, vol. 31, p. 485706, 2019, https://doi.org/10.1088/1361-648x/ab3b77.Suche in Google Scholar
[36] M. S. Khan, L. Shi, and B. Zou, “Impact of vacancy defects on optoelectronic and magnetic properties of Mn-doped ZnSe,” Comput. Mater. Sci., vol. 174, p. 109493, 2020, https://doi.org/10.1016/j.commatsci.2019.109493.Suche in Google Scholar
[37] M. S. Khan, L. Shi, B. Zou, and S. Ali, “Theoretical investigation of optoelectronic and magnetic properties of Co-doped ZnS and (Al, Co) co-doped ZnS,” Comput. Mater. Sci., vol. 174, p. 109491, 2020.10.1016/j.commatsci.2019.109491Suche in Google Scholar
[38] M. S. Khan, L. Shi, X. Yang, S. Ali, H. Ullah, and B. Zou, “Optoelectronic and magnetic properties of Mn-doped and Mn–C co-doped Wurtzite ZnS: a first-principles study,” J. Phys. Condens. Matter, vol. 31, p. 395702, 2019, https://doi.org/10.1088/1361-648x/ab2d98.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Remarks on axion-electrodynamics
- Dynamical Systems & Nonlinear Phenomena
- Interaction of waves in one-dimensional dusty gas flow
- On the ferrofluid lubricated exponential squeeze film-bearings
- Modeling and simulation of capillary ridges on the free surface dynamics of third-grade fluid
- Hydrodynamics
- Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities
- Solid State Physics & Materials Science
- Electronic and magnetic properties of Fe-doped GaN: first-principle calculations
- Genetic evolutionary approach for surface roughness prediction of laser sintered Ti–6Al–4V in EDM
- Thermodynamics & Statistical Physics
- Analytical solution for unsteady flow behind ionizing shock wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field
- A mathematical model for thermography on viscous fluid based on damped thermal flux
Artikel in diesem Heft
- Frontmatter
- General
- Remarks on axion-electrodynamics
- Dynamical Systems & Nonlinear Phenomena
- Interaction of waves in one-dimensional dusty gas flow
- On the ferrofluid lubricated exponential squeeze film-bearings
- Modeling and simulation of capillary ridges on the free surface dynamics of third-grade fluid
- Hydrodynamics
- Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities
- Solid State Physics & Materials Science
- Electronic and magnetic properties of Fe-doped GaN: first-principle calculations
- Genetic evolutionary approach for surface roughness prediction of laser sintered Ti–6Al–4V in EDM
- Thermodynamics & Statistical Physics
- Analytical solution for unsteady flow behind ionizing shock wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field
- A mathematical model for thermography on viscous fluid based on damped thermal flux