Startseite ‘Divorced ~ castrated’: Gender stereotypes in the Croatian section of Kontekst.io, a computer-generated thesaurus of synonyms and semantically related terms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

‘Divorced ~ castrated’: Gender stereotypes in the Croatian section of Kontekst.io, a computer-generated thesaurus of synonyms and semantically related terms

  • Milica Vuković-Stamatović EMAIL logo und Dragana Čarapić
Veröffentlicht/Copyright: 30. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Summary

This article examines gender stereotypes in the selected entries referring to marital status in a computer-generated thesaurus of synonyms and semantically related words called Kontext.io. This thesaurus is very popular in Croatia – in fact, it is the most popular local online thesaurus used in the country. We specifically focus on its Croatian section, which is derived from a large web corpus of Croatian, comprising 1.4 billion words, using a natural language processing (NLP) model based on word embeddings. The analyzed entries from the thesaurus include: udana/udata (marriedfeminine), oženjen (marriedmasculine), razvedena (divorcedfeminine), razveden (divorcedmasculine), udovica (widow) and udovac (widower). We first categorize the synonyms and semantically related terms from these entries into various semantic fields. We then critically analyze gender bias according to the fields, using the framework of critical lexicography and critical discourse analysis. The results point to presence of gender bias in the analyzed entries.

References

Arppe, Antti & Neitsch, Andrew & Dacanay, Daniel & Poulin, Jolene & Hieber, Daniel & Atticus Harrigan. 2023. Finding words that aren’t there: Using word embeddings to improve dictionary search for low-resource languages. In Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (Americas NLP), 144–155. Toronto: Association for Computational Linguistics.10.18653/v1/2023.americasnlp-1.15Suche in Google Scholar

Bär, Jochen A. 2001. Männer – Frauen: Sprachliche Stereotype [Men – Women: Language Stereotypes], Der Deutschunterricht 53(4). 30–41.Suche in Google Scholar

Basta, Christine & Costa-Jussà, Marta R. & Noe Casas. 2019. Evaluating the underlying gender bias in contextualized word embeddings. In Mager, Manuel et al. (ed.), Proceedings of the First Workshop on Gender Bias in Natural Language Processing, 33–39. Florence: Association for Computational Linguistics.10.18653/v1/W19-3805Suche in Google Scholar

Basta, Christine & Costa-Jussà, Marta R. & Noe Casas. 2021. Extensive study on the underlying gender bias in contextualized word embeddings, Neural Computing and Applications 33(8). 3371–3384.10.1007/s00521-020-05211-zSuche in Google Scholar

Bergenholtz, Henning & Rufus Gouws. 2006. How to do language policy with dictionaries, Lexikos 16. 13–45.10.5788/16-0-646Suche in Google Scholar

Bolukbasi, Tolga & Chang, Kai-Wei & Y. Zou, James & Saligrama, Venkatesh & Adam T. Kalai. 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings, Advances in Neural Information Processing Systems 29. 4349–4357.Suche in Google Scholar

Bratić, Vesna & Milica Vuković-Stamatović. 2017. Commodification of women through conceptual metaphors, Gender and Language 11(1). 51–76. 10.1558/genl.22009Suche in Google Scholar

Caliskan, Aylin & Parth Ajay, Pimparkar & Charlesworth, Tessa & Wolfe, Robert & Mahzarin R. Banaji. 2022. Gender bias in word embeddings: A comprehensive analysis of frequency, syntax, and semantics. In Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 156–170. Oxford: AIES.10.1145/3514094.3534162Suche in Google Scholar

Chaimae, Azroumahli & Rybiński, Maciej & El Younoussi, Yacine & José Francisco Aldana Montes. 2020. Comparative study of Arabic word embeddings: evaluation and application, International Journal of Computer Information Systems and Industrial Management Applications 12. 349–362. Suche in Google Scholar

Chen, Wenge. 2019. Towards a discourse approach to Critical Lexicography, International Journal of Lexicography 32(3). 362–388.10.1093/ijl/ecz003Suche in Google Scholar

Ćeriman, Jelena & Tanja Vučković Juroš. 2024. From gender re-traditionalizations to anti-gender mobilizations: Care for family in Serbia and Croatia, East European Politics and Societies 38(2). 662–681.10.1177/08883254231161553Suche in Google Scholar

Dubois, Jean & Claude Dubois. 1971. Introduction à la lexicographie: le dictionnaire. Paris: Larousse.Suche in Google Scholar

Fairclough, Norman. 1992. Discourse and Social Change. Cambridge: Polity Press.Suche in Google Scholar

Fairclough, Norman. 1995 a. Critical Discourse Analysis. London/New York: Longman. Suche in Google Scholar

Fairclough, Norman. 1995 b. Media Discourse. London: Arnold.Suche in Google Scholar

Frawley, William. 1989. The dictionary as text, International Journal of Lexicography 2(3). 231–248.10.1093/ijl/2.3.231Suche in Google Scholar

Fuertes-Olivera, Pedro A. & Sven Tarp. 2022. Critical lexicography at work: reflections and proposals for eliminating gender bias in general dictionaries of Spanish, Lexikos 32(2). 105–132.10.5788/32-2-1699Suche in Google Scholar

Gonen, Hila & Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. arXiv preprint arXiv:1903.03862.10.18653/v1/N19-1061Suche in Google Scholar

Gouws, Rufus H. 2017. Van tematiese na alfabetiese na tematiese ordening in woordeboeke wisselwerking tussen teorie en praktyk, Stellenbosch Papers in Linguistics Plus 53. 133–148.10.5842/53-0-737Suche in Google Scholar

Grenon-Nyenhuis, Chantale. 2000. The dictionary as a cultural institution, Intercultural Communication Studies 10(1). 159–166.Suche in Google Scholar

Herbelot, Aurelie & Marco Baroni. 2017. High-risk learning: acquiring new word vectors from tiny data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 304–309. Copenhagen: Association for Computational Linguistics.10.18653/v1/D17-1030Suche in Google Scholar

Hu, Huilian & Xu, Hai & Junjie Hao. 2019. An SFL approach to gender ideology in the sentence examples in the Contemporary Chinese Dictionary, Lingua 220. 17–30. 10.1016/j.lingua.2018.12.004Suche in Google Scholar

Iversen, Sarah H. 2021. The (re)presentation of knowledge about gender in children’s picture dictionaries. In Goga, Nina & Iversen, Sarah H. & Anna-Steffi Teigland (eds.), Verbal and Visual Strategies in Nonfiction Picture Books: Theoretical and Analytical Approaches, 67–79. Oslo: Scandinavian University Press.10.18261/9788215042459-2021-06Suche in Google Scholar

Kachru, Braj B. 1995. Afterword: directions and challenges. In Kachru, Braj B. & Henry Kahane (eds.), Cultures, Ideologies, and the Dictionary: Studies in Honor of Ladislav Zgusta, 417–424. Berlin/Boston: Max Niemeyer Verlag.10.1515/9783110957075.417Suche in Google Scholar

Lee, Edward. 2020. Gender bias in dictionary-derived word embeddings. Technical report.http://cs230.stanford.edu/projects_fall_2020/reports/55476615.pdf (last access: 20.06.2024).Suche in Google Scholar

Liang, Hai & Ng, Yee Man Margaret & Nathan L. T. Tsang. 2023. Word embedding enrichment for dictionary construction: An example of incivility in Cantonese, Computational Communication Research 5(1). 1–26.10.5117/CCR2023.1.10.LIANSuche in Google Scholar

Ljubešić, Nikola & Filip Klubička. 2016. Croatian web corpus hrWaC 2.1, Slovenian language resource repository CLARIN.SI, ISSN 2820–4042, http://hdl.handle.net/11356/1064 (last access: 15.07.2024).Suche in Google Scholar

Mikolov, Tomas & Sutskever, Ilya & Chen, Kai & Corrado, Greg & Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546. Suche in Google Scholar

Morinaga, Yuya & Kazunori Yamaguchi. 2018. Improvement of reverse dictionary by tuning word vectors and category inference. In Damaševičius, Robertas & Giedrė Vasiljevienė (eds.), Information and Software Technologies: 24th International Conference, ICIST 2018, Vilnius, October 4–6, 2018, Proceedings, 533–545. Cham: Springer International Publishing.10.1007/978-3-319-99972-2_44Suche in Google Scholar

Müller-Spitzer, Caroline. 2023. Gender stereotypes in dictionaries: the challenge of reconciling usage-based lexicography with the role of dictionaries as social agents, Lexikos 33(2). 79–94.10.5788/33-2-1843Suche in Google Scholar

Müller-Spitzer, Caroline & Jan Oliver Rüdiger. 2022. The influence of the corpus on the representation of gender stereotypes in the dictionary. A case study of corpus-based dictionaries of German. In Klosa-Kuckelhaus, Annete & Engleberge, Stefan & Mohrs, Christine & Petra Storjohann (eds.), Dictionaries and Society. Euralex Proceedings, 129–141. Mannheim: IDS Verlag.Suche in Google Scholar

Norri, Juhani. 2019. Gender in dictionary definitions: a comparison of five learner’s dictionaries and their different editions, English Studies 100(7). 866–890.10.1080/0013838X.2019.1604014Suche in Google Scholar

Pettini, Silivia. 2021. One is a woman, so that’s encouraging too. The representation of social gender in “powered by Oxford” online lexicography, Lingue e Linguaggi 44. 275–295.Suche in Google Scholar

Plahuta, Marko. 2024. Kontekst.io, https://virostatiq.com/ (last access: 20.07.2024).Suche in Google Scholar

Shyian, Oksana M. & Foster, Larysa F. & Kuzmenko, Tatiana M. & Yeremenko, Larysa V. & Nina P. Liesnichenko. 2021. Socio-psychological criteria of the formation of gender stereotypes of appearance, Journal of Intellectual Disability-Diagnosis and Treatment 9. 651–666.10.6000/2292-2598.2021.09.06.8Suche in Google Scholar

Solonets, Polina Vladimirovna. 2021. Gender and Dictionary: Russian Perspective, dissertation. Braga: Universidade do Minho.Suche in Google Scholar

Touretzky, David. 2024. Word embedding demo (webpage), Carnegie Melon University blogs, https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/tutorial.html (last access: 18.06.2024).Suche in Google Scholar

Ulčar, Matej & Supej, Anka & Robnik-Šikonja, Marko & Senja Pollak. 2021. Slovene and Croatian word embeddings in terms of gender occupational analogies, Slovenščina 2.0: empirične, aplikativne in interdisciplinarne raziskave 9(1). 26–59.10.4312/slo2.0.2021.1.26-59Suche in Google Scholar

Vacalopoulou, Anna. 2022. Gender stereotypes in Greek children’s dictionaries, Dictionaries: Journal of the Dictionary Society of North America 43(1). 167–192.10.1353/dic.2022.0003Suche in Google Scholar

van Dijk, Teun. 2001. Critical discourse analysis. In Schriffin, Deborah & Tannen, Deborah & Heidi Hamilton (eds.), Handbook of Discourse Analysis, 352–371. Oxford: Blackwell. Suche in Google Scholar

Vuković-Stamatović, Milica. 2024. Sexist humor in public Facebook comments delegitimizing Female politicians within Montenegro’s patriarchal culture. In Feldman, Ofer (ed.), Communicating Political Humor in the Media. The Language of Politics. Singapore: Springer. 10.1007/978-981-97-0726-3_9Suche in Google Scholar

Wodak, Ruth 1989. Introduction. In Wodak, Ruth (ed.), Language, Power and Ideology. XIII–XX. Amsterdam/Philadelphia: John Benjamins.10.1075/ct.7Suche in Google Scholar

Wodak, Ruth 2002. Aspects of critical discourse analysis, Zeitschrift für Angewandte Linguistik 36. 5–31.Suche in Google Scholar

Yang, Zekun & Juan Feng. 2020. April. A causal inference method for reducing gender bias in word embedding relations, Proceedings of the AAAI Conference on Artificial Intelligence 34(5). 9434–9441.10.1609/aaai.v34i05.6486Suche in Google Scholar

Zhao, Jieyu & Wang, Tianlu & Yatskar, Mark & Cotterell, Ryan & Ordonez, Vicente & Kai-Wei Chang. 2019. Gender bias in contextualized word embeddings. arXiv preprint arXiv:1904.03310.10.18653/v1/N19-1064Suche in Google Scholar

Published Online: 2025-10-30
Published in Print: 2025-10-30

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/slaw-2025-0036/html
Button zum nach oben scrollen