Startseite Chromatographic characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chromatographic characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc

  • Laura García EMAIL logo , Ingrid Ruíz und José A. Gómez
Veröffentlicht/Copyright: 21. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

At the Center of Molecular Immunology (Havana, Cuba), the fusion protein SARS-CoV-2 S protein (RBD)-hFc was synthesized linking the receptor-binding domain (RBD) of the SARS-CoV-2 virus and the crystallizable fragment of a human immunoglobulin. This fusion protein was used in the construction of a diagnostic device for COVID-19 called UMELISA SARS-CoV-2-IgG. Given the relevance of this protein, the characterization of three batches (A1, A2 and A3) was carried out. The molecular weight of the protein was determined to be 120 kDa, using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its isoelectric point was estimated between 8.3 and 9 by isoelectric focusing. The molecular integrity was evaluated by size exclusion liquid chromatography and SDS-PAGE after one year of the production of the protein; the presence of aggregates and fragments was detected. Batches A1 and A2 have a purity percentage higher than 95% and they can be used for the construction of new diagnostic devices.


Corresponding author: Laura García, Faculty of Chemistry, University of Havana, 10400, Havana, Cuba, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Accinelli, R, Zhang Xu, C, Yachachin-Chavez, J, Wang, J, Caceres-Pizarro, J, Tafur-Bances, K, et al.. COVID-19: pandemic for the new virus SARS-CoV-2. Rev Peru Med Exp Salud Pública 2020;2:302–11. https://doi.org/10.17843/rpmesp.2020.372.5411.Suche in Google Scholar PubMed

2. Rodriguez Martinto, J. UMELISA SARS COV 2 IgG the novel Cuban system for the diagnosis of COVID 19. Granma 2020;3:14.Suche in Google Scholar

3. Tentin, S, Prendergast, F, Venyaminov, S. Accuracy of protein secondary structure from circular dichroism spectra based on immunoglobulin examples. Anal Chem 2003;321:183–7.10.1016/S0003-2697(03)00458-5Suche in Google Scholar PubMed

4. He, Y, Qi, J, Xiao, L, Shen, L, Yu, W, Hu, T. Purification and characterization of the receptor-binding domain of SARS-CoV-2 spike protein from Escherichia coli. Eng Life Sci 2021;21:453–60. https://doi.org/10.1002/elsc.202000106.Suche in Google Scholar PubMed PubMed Central

5. Lan, J, Ge, J, Yu, J, Shan, S, Zhou, H, Fan, S, et al.. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215–25. https://doi.org/10.1038/s41586-020-2180-5.Suche in Google Scholar PubMed

6. ProMab Biotechnologies Inc. Recombinant spike protein RBD (HFC TAG). California USA: Biotechnologies Inc.; 2020.Suche in Google Scholar

7. Westermeier, R. Electrophoresis in practice: a guide to methods and applications of DNA and proteins separations, 5th ed. Weinheim, Germany: Wiley VCH; 2016.10.1002/9783527695188Suche in Google Scholar

8. Fekete, S, Guillarme, D, Sandra, P, Sandra, K. Chromatographic, electrophoretic, and mass spectrometric methods for the analitical characterizacion of protein biofarmaceuticals. Anal Chem 2016;88:480–507. https://doi.org/10.1021/acs.analchem.5b04561.Suche in Google Scholar PubMed

9. Garfin, D. Gel electroforesis of proteins. In: Essencial cell biology. Oxford: Oxford University Press; 2003:197–268 pp.10.1093/oso/9780199638314.003.0007Suche in Google Scholar

10. Gene Universal. SARS-CoV-2 (2019-nCoV) spike protein (RBD) (hFc Tag). Delaware USA: GeneUniversal Inc.; 2020.Suche in Google Scholar

11. Hintersteiner, B, Lingg, N, Zhang, P, Woen, S, Hoi, K, Stranner, S, et al.. Charge heterogeneity: basic antibody charge variants with increased binding to Fc receptors. MABS 2016;8:1548–60. https://doi.org/10.1080/19420862.2016.1225642.Suche in Google Scholar PubMed PubMed Central

12. Smith, L, Kellener, N. Proteoform: a single term describing protein complexity. Nat Methods 2013;10:186–7. https://doi.org/10.1038/nmeth.2369.Suche in Google Scholar PubMed PubMed Central

13. Mathews, C, Van Holde, K. Bioquímica, 3rd ed. Madrid: McGraw-Hill-Interamericana; 2000.Suche in Google Scholar

14. Hai, Y, Harshal, C, Shengshu, H, Xi, C. One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 2006;1:2485–92.10.1038/nprot.2006.401Suche in Google Scholar PubMed PubMed Central

15. Parr, M, Montacir, O, Montacir, H. Physicochemical characterization of biopharmaceuticals. J Pharmaceut Biomed Anal 2016;130:366–89. https://doi.org/10.1016/j.jpba.2016.05.028.Suche in Google Scholar PubMed

16. Voet, D, Voet, J. Biochemistry, 4th ed. New Jersey, USA: Wiley; 2011.Suche in Google Scholar

17. Kim, B. Molecular profiling, Western Blot techniques. In Methods in molecular biology. Manassas, USA: Ceres Nanosciences, Inc.; 2017, vol 1606:133–9 pp.10.1007/978-1-4939-6990-6_9Suche in Google Scholar PubMed

18. Woon, D, Wook, J, Jin, C, Young, G, Soo, G, Kap, J. Detection of proteins in poliacrilamida gels using eriochrome black T rhodamina B. Anal Biochem 1998;2:118–20.10.1006/abio.1998.2813Suche in Google Scholar PubMed

19. Franzini, M, Bramanti, E, Ottaviano, V, Ghiri, E, Scatena, F, Barsacchi, R, et al.. A high performance gel filtration chromatography method for gamma-glutamyltransferase fraction analysis. Anal Biochem 2008;1:374. https://doi.org/10.1016/j.ab.2007.10.025.Suche in Google Scholar PubMed

20. Fekete, S, Beck, A, Veuthey, JL, Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharmaceut Biomed Anal 2014;101:161–73. https://doi.org/10.1016/j.jpba.2014.04.011.Suche in Google Scholar PubMed

21. Agilent. Pactical guide about size exclusion chromatography for the analysis of biomolecules. USA: Agilent Technologies, Inc.; 2015.Suche in Google Scholar

22. Hong, P, Koza, S, Bouvier, E. Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 2012;35:2923–50. https://doi.org/10.1080/10826076.2012.743724.Suche in Google Scholar PubMed PubMed Central

23. Janson, J. Protein purification: principles, high resolution methods and applications. Toronyo, Canadá: Wiley; 2011.10.1002/9780470939932Suche in Google Scholar

24. Balázs, B, Fekete, J, Sipkó, E. Challenges in liquid chromatographic characterization of proteins. J Chromatogr B 2016;10:3–22.10.1016/j.jchromb.2016.04.037Suche in Google Scholar PubMed

25. Xu, Y, Wang, D, Mason, B, Rossomando, T, Ning, L, Liu, D, et al.. Structure, heterogeneity and developability assessment of therapeutic antibodies. mAbs 2019;11:239–64. https://doi.org/10.1080/19420862.2018.1553476.Suche in Google Scholar PubMed PubMed Central

Published Online: 2022-04-21

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Reviews
  3. Anticancer properties of arylchromenes and arylchromans: an overview
  4. Solid state lithium ion conductors for lithium batteries
  5. Performance and kinetics of a fluidized bed anaerobic reactor treating distillery effluent
  6. Use of biochemical markers for diabetes prevention in the new decade
  7. Antibreast cancer activities of phytochemicals from Anonna muricata using computer-aided drug design (CADD) approach
  8. Alkaline-earth metal(II) complexes of salinomycin – spectral properties and antibacterial activity
  9. Use of heterogeneous catalysis in sustainable biofuel production
  10. Antibacterial, antioxidant and cytotoxic activities of the stem bark of Archidendron jiringa (Jack) I.C. Nielsen
  11. A review of sludge production in South Africa municipal wastewater treatment plants, analysis of handling cost and potential minimization methods
  12. Cu-Catalysed tandem reactions for building poly hetero atom heterocycles-green chemistry tool
  13. Optimizing Cr(VI) adsorption parameters on magnetite (Fe3O4) and manganese doped magnetite (MnxFe(3-x)O4) nanoparticles
  14. Fabaceae: a significant flavonoid source for plant and human health
  15. A novel application of synthesised based squarylium dyes on nylon 6, and silk woven fabrics
  16. Chromatographic characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
  17. Ethnopharmacology, phytochemistry and a new chemotaxonomic marker in Oldenlandia affinis (Roem. & Schult.) DC. Rubiaceae
  18. Extraction, isolation and characterization of secondary metabolites in the leaves of Morinda lucida from Oshiegbe in Ebonyi State
  19. Lead optimisation efforts on a molecular prototype of the immunomodulatory parasitic protein ES-62
  20. Catalytic applications of graphene oxide towards the synthesis of bioactive scaffolds through the formation of carbon–carbon and carbon–heteroatom bonds
  21. Synthesis, characterization, DFT and molecular docking studies of acetone O-((2,5-dichlorophenyl)sulfonyl) oxime
  22. Design of membrane systems
  23. Conceptual design and cost-efficient environmentally Benign synthesis of beta-lactams
  24. Synthesis and characterization of alkaloid derived hydrazones and their metal (II) complexes
  25. The spontaneity of chemical reactions: challenges with handling the concept and its implications
  26. Copper nanoparticles catalyzed carbon–heteroatom bond formation and synthesis of related heterocycles by greener procedures
  27. Tellurium in carbohydrate synthesis
  28. Conformational preferences and intramolecular hydrogen bonding patterns of tetraflavaspidic acid BBBB – a tetrameric acylphloroglucinol
  29. Phytochemical and antioxidant studies of Hibiscus Cannabinus seed oil
  30. Polyaniline mediated heterogeneous catalysis in the preparation of heterocyclic derivatives through carbon–heteroatom bond formations
  31. A comparison of two digestion methods and heavy metals determination in sediments
  32. Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations
  33. Recyclable magnetically retrievable nanocatalysts for C–heteroatom bond formation reactions
  34. Small molecules as next generation biofilm inhibitors and anti-infective agents
  35. Toxicity of tellurium and its compounds
  36. Biodegradable polycaprolactone (PCL) based polymer and composites
  37. Quality of poultry meat- the practical issues and knowledge based solutions
Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2021-0164/html
Button zum nach oben scrollen