Startseite Technik Vibratory polishing of multiphase CuZn30//CuZn80 diffusion pairs for electron backscatter diffraction (EBSD) characterization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vibratory polishing of multiphase CuZn30//CuZn80 diffusion pairs for electron backscatter diffraction (EBSD) characterization

  • J. Möbius

    studied materials science at Friedrich Schiller University Jena between 2016 and 2022 and is now a doctoral candidate at the Otto Schott Institute of Materials Research. His research focuses on thermodynamics and phase transformations in high entropy alloys for industrial applications.

    , S. Lippmann und M. Seyring

    received his PhD in materials science from Friedrich Schiller University Jena. He is now at Schmalkalden University of applied science for research and teaching as head of the microscopy and materials diagnostics laboratory. The key areas of his work comprise solid state phase transformations and internal interfaces.

Veröffentlicht/Copyright: 11. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of vibratory polishing time on the quality of EBSD mappings of a multiphase microstructure is investigated and optimized for CuZn30//CuZn80 diffusion couples. The diffusion couples consist of four different phases whose hardness varies between 70 HV0.1 and 454 HV0.1. These are first mechanically ground, polished and finally prepared by vibratory polishing. A vibratory polishing of 2 h provides for all phases the highest quality of the recorded Kikuchi patterns (Image Quality values) and the highest correct assignment of the individual pixels of the mapping. Preparation artifacts, such as relief formation, only appear at higher vibratory polishing times (> 2 h). A vibratory polishing of the diffusion couples of 0.5 h already provides sufficient surface quality for EBSD analyses.

Kurzfassung

Der Einfluss der Vibrationspolierzeit auf die Qualität von EBSD-Mappings eines mehrphasigen Gefüges wird an CuZn30//CuZn80-Diffusionspaaren untersucht und optimiert. Die Diffusionspaare bestehen aus vier verschiedenen Phasen, deren Härte zwischen 70 HV0,1 und 454 HV0,1 variiert. Diese werden zuerst mechanisch geschliffen, poliert und anschlie-ßend durch eine Vibrationspolitur endpräpariert. Eine Vibrationspolitur von 2 h liefert für alle Phasen die höchste Qualität der aufgenommenen Kikuchi-Muster (Image Quality Werte) und die höchste korrekte Zuordnung der einzelnen Bildpunkte des Mappings. Präparationsartefakte, wie Reliefbildung, treten erst bei höheren Vibrationspolierzeiten (> 2 h) auf. Eine Vibrationspolitur der Diffusionspaare von 0,5 h liefert bereits eine ausreichende Oberflächenqualität für EBSD-Analysen.

About the authors

J. Möbius

studied materials science at Friedrich Schiller University Jena between 2016 and 2022 and is now a doctoral candidate at the Otto Schott Institute of Materials Research. His research focuses on thermodynamics and phase transformations in high entropy alloys for industrial applications.

M. Seyring

received his PhD in materials science from Friedrich Schiller University Jena. He is now at Schmalkalden University of applied science for research and teaching as head of the microscopy and materials diagnostics laboratory. The key areas of his work comprise solid state phase transformations and internal interfaces.

Acknowledgements

The authors would like to thank the Ger-man Research Foundation DFG for financial support (grant number 328636876).

Danksagung

Die Autoren danken der Deutschen Forschungsgemeinschaft DFG für die finanzielle Förderung (Projektnummer 328636876).

References / Literatur

[1] Chen, D.; Kuo, J. C.; Wu, W. T.: Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy. 111 (2011), pp. 1488–1494. DOI:10.1016/j.ultramic.2011.06.00710.1016/j.ultramic.2011.06.007Suche in Google Scholar PubMed

[2] Katrakova, D.; Muecklich, F.: Specimen preparation for electron backscatter diffraction – Part 1: Metals. Practical Metallography. 38 (2001) 10, pp. 547–565. DOI:10.1515/pm-2001-38100210.1515/pm-2001-381002Suche in Google Scholar

[3] Scheck, R.; Speicher, M.; Willer, D.: Vibratory Polishing – A Preparation Technique for Demanding Tasks in Microstructural Characterization. Practical Metallography. 58 (2021) 4, pp. 193–203. DOI:10.1515/pm-2021-001410.1515/pm-2021-0014Suche in Google Scholar

[4] Wright, S. I.; Nowell, M. M.: EBSD image quality mapping. Microscopy and Microanalysis. 12 (2006) 1, pp. 72–84. DOI:10.1017/S143192760606009010.1017/S1431927606060090Suche in Google Scholar PubMed

[5] Katrakova, D.; Damgaard, M. J.; Muecklich, F.: Titel fehlt. Structure. 38 (2001), 19-2410.1515/pm-2001-381002Suche in Google Scholar

[6] Seyring, M.; Rettenmayr, M.: Preparation for Electron Backscatter Diffraction with LaboPol-4 / LaboForce-1. Acta Materialia. 208 (2021). DOI:10.1016/j.actamat.2021.11671310.1016/j.actamat.2021.116713Suche in Google Scholar

[7] Loesslein, S. M.; Kasper, M.; Merz, R.; Pauly, C.; Mueller, D. W.; Kopnarski, M.; Muecklich, F.: Patience Alone is not Enough – A Guide for the Preparation of Low-Defect Sections from Pure Copper. Practical Metallography. 58 (2021) 7, pp. 388–407. DOI:10.1515/pm-2021-003110.1515/pm-2021-0031Suche in Google Scholar

[8] Watermeyer, P.: Vibratory Polishing of a Nickel-Based Superalloy (MAR 247) Using VibroMet 2. Practical Metallography. 49 (2012) 7, pp. 412–427. DOI:10.3139/147.11017810.3139/147.110178Suche in Google Scholar

[9] Kaaden, T.; Rettenmayr, M.; Lippmann, S.: Phase Identification in Multi-Phase Cu-Zn/ Cu-Al Alloys with Macroscopic Concentration Gradients. Practical Metallography. 58 (2021) 2, pp. 83–95. DOI:10.1515/pm-2020-000510.1515/pm-2020-0005Suche in Google Scholar

[10] Vander Vort, G. F.: Metallographic Preparation for Electron Backscatterd Diffraction. Available from: https://www.buehler.com/solutions/buehler-literature/technotes/ (05.01.2023)Suche in Google Scholar

[11] Konkova, T.; Mironov, S.; Korznikov, A.; Korznikova, G.; Myshlyaev, M. M.; Semiatin, S. L.: An EBSD investigation of cryogenically-rolled Cu-30%Zn brass. Materials Characterization. 101 (2015), pp. 173–179. DOI:10.1016/j.matchar.2015.02.00410.1016/j.matchar.2015.02.004Suche in Google Scholar

[12] ATM Qness GmbH: Instruction Manual Saphir Vibro, 2021. Available from: https://www.qatm.com/products/grinding-polishing-etching/automaticgrinder-polisher/qpol-vibro/downloads(05.01.2023)Suche in Google Scholar

[13] Seyring, M.; Wanierke, F.; Kaaden, T.; Lippmann, S.; Rettenmayr, M.: Influence of natural oxide layers at Ni/NiAl interfaces on Ni3Al phase formation. Materials Characterization. 174 (2021), pp. 1–7. DOI:10.1016/j.matchar.2021.11103210.1016/j.matchar.2021.111032Suche in Google Scholar

[14] Katrakova, D.; Muecklich, F.: Specimen preparation for electron backscatter diffraction (EBSD) – Part II: Ceramics. Practical Metallography. 39 (2002) 12, pp. 644–662. DOI:10.1515/pm-2002-39120510.1515/pm-2002-391205Suche in Google Scholar

[15] Walnsch, A.; Kaaden, T.; Fischer, P. D. B.; Motylenko, M.; Seyring, M.; Leineweber, A.; Lippmann, S.: Formation of a nanoscale two-phase microstructure in Cu-Zn(-Al) samples with macroscopic concentration gradient. Materials Characterization. 192 (2022), p. 7. DOI:10.1016/j.matchar.2022.11222910.1016/j.matchar.2022.112229Suche in Google Scholar

[16] Undisz, A.; Freiberg, K. E.; Seide, A.; Koenen, T.; Rettenmayr, M.: Microstructure Preparation Using Glow Discharge Plasma Taking the Examples of Ni-Ti, Cu-Zn and a Ni-Based Alloy. Practical Metallography. 53 (2016) 2, pp. 86–97. DOI:10.3139/147.11037610.3139/147.110376Suche in Google Scholar

[17] Kral, M. V.; Drabble, D. J. F.; Gardiner, B. R.; Tait, P. C.: Implications of EBSD-based Grain Size Measurement on Structure-Property Correlations. Practical Metallography. 46 (2009) 9, pp. 469–482. DOI:10.3139/147.11005410.3139/147.110054Suche in Google Scholar

Received: 2023-02-06
Accepted: 2023-03-16
Published Online: 2023-06-11
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2023-1043/html
Button zum nach oben scrollen