Startseite Technik Analysis of microstructure evolution during heat treatment of CoSm permanent magnets using high-resolution scanning electron microscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of microstructure evolution during heat treatment of CoSm permanent magnets using high-resolution scanning electron microscopy

  • Philipp Braun

    Bachelor’s degree in Materialography and Master’s degree in Advanced Materials and Manufacturing at Aalen University. Currently working on his PhD, he is also research associate at the Materials Research Institute on magnetic materials.

    , Judith Laukart

    Graduated as Dipl.-Ing. for Materials Sciences at University Jena she worked on metallic materials TU Braunschweig and Aalen University. Currently she is working as a research associate in the magnetic materials group at Materials Research Institute Aalen.

    , Ute Golla-Schindler , Ralf Löffler , Dagmar Goll und Gerhard Schneider
Veröffentlicht/Copyright: 30. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

CoSm permanent magnets are characterized by high coercivity, which is due to the formation of a cellular nanostructure. For the understanding and optimization of these magnets, the evolution and morphology of the cellular structure need to be analyzed, most commonly by transmission electron microscopy (TEM). Meanwhile, high-resolution scanning electron microscopy (SEM) is enabling the visualization and large-scale imaging of the nanostructure while requiring relatively little preparation effort, combined with easy sample handling. Different preparation techniques will be used to visualize different microstructural constituents, enabling the analysis of their morphologies and fractions.

Kurzfassung

CoSm-basierte Dauermagnete zeichnen sich durch hohe Koerzitivfeldstärken aus, welche in der Ausbildung einer zellularen Nanostruktur begründet sind. Zum Verständnis und zur Optimierung dieser Magnete muss die Entstehung und Morphologie der zellularen Struktur analysiert werden. Bisher wurde hierzu vorwiegend die Transmissionselektronenmikroskopie (TEM) eingesetzt. Die hochauflösende Rasterelektronenmikroskopie (REM) bietet inzwischen die Möglichkeit, mit relativ geringem Präparationsaufwand und einfachem Probenhandling die Nanostruktur zu visualisieren und großflächig abzubilden. Durch unterschiedliche Präparationsmethoden können unterschiedliche Gefügebestandteile sichtbar gemacht werden, welche anschließend hinsichtlich ihrer Anteile und Morphologie untersucht werden können.

About the authors

Philipp Braun

Bachelor’s degree in Materialography and Master’s degree in Advanced Materials and Manufacturing at Aalen University. Currently working on his PhD, he is also research associate at the Materials Research Institute on magnetic materials.

Judith Laukart

Graduated as Dipl.-Ing. for Materials Sciences at University Jena she worked on metallic materials TU Braunschweig and Aalen University. Currently she is working as a research associate in the magnetic materials group at Materials Research Institute Aalen.

Danksagung

Die Arbeit wurde durch das Bundesministerium für Bildung und Forschung im Rahmen des Verbundprojektes „HoMag“ (FKZ: 03XP0166G) finanziell gefördert.

Acknowledgement

This work was financially supported by the Federal Ministry for Education and Research within the project "HoMag" (Funding Code: 03XP0166G).

References / Literatur

[1] Liu P., Fullerton E., Gutfleisch O., Sellmyer D. J.: Nanoscale Magnetic Materials and Applications, Springer-Verlag, Dordrecht Heidelberg London New York (2009), S. 337ff. DOI: 10.1007/978-0-387-85600-110.1007/978-0-387-85600-1Suche in Google Scholar

[2] Maury C., Rabenberg L., Allibert C. H.: Phys. Stat. Sol. 140 (1993) 57, S. 57–72. DOI: 10.1002/pssa.221140010410.1002/pssa.2211400104Suche in Google Scholar

[3] de Campos M. F., Neiva A. C., Romero S. A., Murakami R. K., Rechenberg H. R., Missell F. P.: IEEE T Magn 42 (2006) 11, S. 3770–3772. DOI: 10.1109/TMAG.2006.88405810.1109/TMAG.2006.884058Suche in Google Scholar

[4] Hadjipanayis G. C., Tang W., Zhang Y., Chui S. T., Liu J. F., Chen C., Kronmüller H.: IEEE T Magn 36 (2000) 5, S. 3382–3387. DOI: 10.1109/20.90880810.1109/20.908808Suche in Google Scholar

[5] Derkaoui S., Valignat N., Allibert C. H.: J Alloys Comp 235 (1996), S. 112–119. DOI: 10.1016/0925-8388(95)02119-110.1016/0925-8388(95)02119-1Suche in Google Scholar

[6] Rabenberg L., Mishra R. K., Thomas G.: J Appl Phys 53 (1982) 3, S. 2389–2391. DOI: 10.1063/1.33086710.1063/1.330867Suche in Google Scholar

[7] Goll, D., Kronmüller, H., Stadelmaier, H. H.: J. Appl. Phys. 96 (2004) 11, S. 6534–6545. DOI: 10.1063/1.180925010.1063/1.1809250Suche in Google Scholar

[8] Xiong, X. Y., Ohkubo, T., Koyama, T., Ohashi, K., Tawara, Y., Hono, K.: Acta Mat 52 (2004) 3, S. 737–748. DOI: 10.1016/j.actamat.2003.10.01510.1016/j.actamat.2003.10.015Suche in Google Scholar

[9] Gutfleisch O., Müller K.-H., Khlopkov K., Wolf M., Yan A., Schäfer R., Gemming, T., Schultz L.: Acta Mat 54 (2006) 4, S. 997–1008. DOI: 10.1016/j.actamat.2005.10.02610.1016/j.actamat.2005.10.026Suche in Google Scholar

[10] Palit, M., Rajkumar, D. M., Pandian, S., Kamat, S. V.: Mater Chem Phys 179 (2016), S. 214– 222. DOI: 10.1016/j.matchemphys.2016.05.03310.1016/j.matchemphys.2016.05.033Suche in Google Scholar

[11] Romero, S. A., Moreira, A. J., Landgraf, F. F. G., de Campos, M. F.; J Magn Magn Mater 514 (2020), S. 167147. DOI: 10.1016/j.jmmm.2020.16714710.1016/j.jmmm.2020.167147Suche in Google Scholar

[12] Goll, D., Sigle, W., Hadjipanayis, G. C., Kronmüller, H.: Nanocrystalline and Nanostructured High-Performance Permanent Magnets, in: Mat. Res. Soc. Symp. Proc. Vol. 674 (2001), S. U2.4.1–12. DOI: 10.1557/PROC-674-U2.410.1557/PROC-674-U2.4Suche in Google Scholar

[13] Wu, H., Zhang, C., Liu, Z., Wang, G., Lu, H., Chen, G., Li, Y., Chen, R., Yan, A.: Acta Mat 200 (2020), S. 883–892. DOI: 10.1016/j.actamat.2020.09.05710.1016/j.actamat.2020.09.057Suche in Google Scholar

[14] Goll, D., Sigle, W., Hadjipanayis, G. C., Kronmüller, H.: Micromagnetic and microstructural analysis of the temperature dependence of the coercive field of Sm2(Co, Cu, Fe, Zr)17 permanent magnets, in: Proc. 16th Int. Workshop Rare-Earth Magn. and Appl. (2000), S. 61-70, Ed: Kaneko, H.; Homma, M.; Okada, M. (Ed.)Suche in Google Scholar

[15] Craik D. J. , Isaac E. D.: Proc. Phys. Soc. 76 (1960), S. 160.10.1088/0370-1328/76/1/419Suche in Google Scholar

[16] Horiuchi Y., Hagiwara M., Okamoto, K., Kobayashi, T., Endo M., Kobayashi, T., Nakamura, T., Sakurada S.: IEEE T Magn 49 (2013) 7, S. 3221–3224 . DOI: 10.1109/TMAG.2013.224757610.1109/TMAG.2013.2247576Suche in Google Scholar

[17] Zhou, X., Song, X., Jia, W., Xiao, A., Yuan, T., Ma, T.: Scr Mater 182 (2020), S. 1–5. DOI: 10.1016/j.scriptamat.2020.02.02810.1016/j.scriptamat.2020.02.028Suche in Google Scholar

Received: 2022-01-28
Accepted: 2022-02-23
Published Online: 2022-04-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 9.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2022-0020/html
Button zum nach oben scrollen