Startseite Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2
Artikel Open Access

Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2

  • Marole M. Maluleka EMAIL logo und Malose J. Mphahlele ORCID logo
Veröffentlicht/Copyright: 18. August 2020

Abstract

C15H10BrClINO2, monoclinic, P21/n (no. 14), a = 5.0083(2) Å, b = 9.7548(3) Å, c = 31.9640(10) Å, β = 92.576(2)°, V = 1560.02(9) Å3, Z = 4, Rgt(F) = 0.0416, wRref(F2) = 0.1059, T = 173 K.

CCDC no.: 2012113

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow block
Size:0.62 × 0.48 × 0.30 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.79 mm−1
Diffractometer, scan mode:Bruker D8 Venture Photon, ω
θmax, completeness:28.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:31032, 3781, 0.058
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3303
N(param)refined:263
Programs:Bruker [1], WinGX/ORTEP [2], SHELX [3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.6931(11)0.6775(5)0.67719(17)0.0408(12)
C20.4898(9)0.5747(4)0.66531(15)0.0312(9)
C30.4385(9)0.4607(4)0.69161(14)0.0283(9)
C40.2367(9)0.3685(5)0.67779(14)0.0305(9)
C50.0928(9)0.3865(5)0.64076(14)0.0326(9)
H5−0.0404380.324490.6325630.039*
C60.1472(9)0.4984(5)0.61545(14)0.0314(9)
C70.3424(9)0.5906(5)0.62729(14)0.0322(9)
H70.3776160.6643820.6099630.039*
C8Aa0.7868(15)0.7760(8)0.6414(3)0.037(2)
H8Aa0.7931340.7387450.6130330.044*
C9Aa0.722(2)0.9235(10)0.6460(3)0.043(2)
H9Aa0.6154470.9528810.6693660.052*
O2Aa0.9873(14)0.8721(7)0.6546(3)0.060(3)
C8Bb0.624(2)0.8232(11)0.6627(4)0.029(3)
H8Bb0.4355130.848870.6581350.035*
C9Bb0.821(3)0.8790(16)0.6349(5)0.034(3)
H9Bb0.9694850.8225650.6258420.04*
O2Bb0.809(2)0.9229(10)0.6780(3)0.047(3)
C100.7036(15)1.0025(7)0.6060(2)0.063(2)
C11Ac0.445(3)1.0899(16)0.6043(5)0.054(3)
H11Ac0.322921.0863960.6253530.065*
C12Ac0.407(3)1.1752(16)0.5689(5)0.054(4)
H12Ac0.2575311.2316440.565950.065*
C11Bc0.591(3)1.1064(14)0.6093(4)0.042(3)
H11Bc0.5379641.1305830.635890.05*
C12Bc0.530(3)1.1945(15)0.5773(5)0.043(3)
H12Bc0.4379941.2745160.5832140.052*
C130.5941(13)1.1729(7)0.5391(2)0.0550(15)
C14Ad0.833(3)1.1117(19)0.5456(5)0.074(5)
H14Ad0.9687721.1276140.5272370.089*
C15Ad0.878(3)1.0277(18)0.5785(6)0.068(4)
H15Ad1.0442750.9854630.5816770.082*
C14Bd0.719(3)1.0433(14)0.5298(3)0.052(3)
H14Bd0.7471081.0179620.5022760.062*
C15Bd0.797(3)0.9575(14)0.5629(4)0.058(3)
H15Bd0.8975940.8786240.5593180.07*
N10.5727(9)0.4440(5)0.72926(13)0.0352(9)
O10.8370(8)0.6731(4)0.70836(12)0.0467(9)
Cl10.5200(5)1.2815(2)0.49726(7)0.0859(6)
Br1−0.04867(11)0.51822(6)0.56198(2)0.04269(15)
I10.14893(7)0.19560(3)0.71369(2)0.03900(12)
H1A0.546(13)0.363(7)0.743(2)0.055(18)*
H1B0.713(13)0.491(7)0.734(2)0.048(18)*
  1. aOccupancy: 0.626(11), bOccupancy: 0.374(11), cOccupancy: 0.494(6), dOccupancy: 0.506(6).

Source of material

A stirred solution of 1-(2-amino-5-bromo-3-iodophenyl)-3-(4-chlorophenyl)prop-2-en-1-one (4.00 g, 4.00 mmol) in a mixture of methanol (100 mL, 1:1 v/v) and KOH (8 pellets) at 0 °C was reacted in a 100 mL round-bottomed flask. The reaction mixture was treated with H2O2 (20 mL) and stirred overnight at room temperature. The mixture was then quenched with ice-cold water (200 mL) and the product was extracted into chloroform. The combined organic layers were dried over MgSO4, filtered off and concentrated under reduced pressure on a rotary evaporator to afford the (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone (2.10 g, 54%) as a solid; mp. 139–141 °C; νmax(ATR) 3458, 3419, 3316, 1654, 1595, 1542, 1515, 1491, 1434, 1188, 1091, 1014, 889, 819, 674, 540, 487, 420 cm−1; 1H NMR (500 MHz, CDCl3) 4.06 (1H, d, J = 2.0 Hz, α-H), 4.16 (1H, d, J = 2.0 Hz, β-H), 7.02 (2H, br s, NH2), 7.09 (2H, d, J = 8.5 Hz, H-2′,6′), 7.18 (2H, d, J = 8.5 Hz, H-3′,5′), 7.86 (1H, d, J = 2.5 Hz, H-4), 7.93 (1H, d, J = 2.0 Hz, H-6); 13C NMR (125 MHz, CDCl3) 58.6, 60.1, 87.7, 107.2, 118.0, 125.7, 128.7, 129.1, 133.6, 134.9, 140.1, 146.7, 191.9; HRMS (ES): found. 476.8628 C15H11BrClINO2+ requires 476.8608.

Experimental details

The intensity of the data was determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated MoKα1 radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program SAINT+, version 6.02 [1] and empirical absorption corrections were made using SADABS [1]. The structure was solved in the WinGX [2] Suite of programs, using intrinsic phasing through SHELXT [3] and refined using SHELXL-2017 [3]. All C-bound H atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 times those of their parent atoms. All N-bound H atoms were located in the difference fourier map and their coordinates and isotropic thermal parameters allowed to refine freely. The positional disorder of the epoxide group (labelled C8A/C9A/O1A and C8B/C9B/O1B) was resolved by finding alternative positions in the difference Fourier map and their site occupancies refined to 0.626(11) and 0.374(11). The positional disorder of the phenyl ring (labelled C11A/C12A/C14A/C15A and C11B/C12B/C14B/C15B) was resolved by finding alternative positions in the difference Fourier map and their site occupancies refined to 0.494(6) and 0.506(6). Diagrams and publication material were generated using ORTEP-3 [2], and PLATON [4].

Comment

Aminochalcone epoxides are important substrates for the synthesis of a wide range of natural products and biologically active molecules [5], [6], [7]. Epoxychalcones have been found to be biosynthetic intermediates for the rapid construction of complex polycyclic natural products such as flavonoids and their azaflavonoid analogues [8]. The reactivity of the oxirane ring results from its angle strain, which makes the carbon–oxygen bond weaker and more reactive towards nucleophiles than that of ethers [9]. The Weitz–Scheffer reaction, which makes use of hydrogen peroxide under alkaline conditions represents the most efficient method for the oxidation of the α,β-unsaturated ketones into α-epoxyketones [10]. This reaction in the case of 2-aminochalcones is stereospecific and occurs via syn-addition with retention of the trans-stereochemistry of the parent chalcone. The 2-aminochalcone epoxides exist exclusively in solution and solid state in trans geometry with strong intramolecular hydrogen bonding interaction between the amino and carbonyl groups [11]. The previously prepared 1-(2-amino-5-bromo-3-iodophenyl)-3-(4-chlorophenyl)prop-2-en-1-one [12] was subjected to hydrogen peroxide in the presence of aqueous sodium hydroxide in methanol at room temperature for 12 h to obtain the title compound.

Both the ketoaryl and aryl groups are in trans orientation relative to each other about the oxirane ring (O2a—C8a—C9a) with a dihedral angle C1—C8a—C9a—C10 = −155.1(7)° (see the figure). In the asymmetric unit, there is hydrogen bonding interaction involving the amino hydrogen atom as a donor and carbonyl oxygen atom as the hydrogen bond acceptor [N(1)—H(1A)⋯O(1) = 2.46(7) Å and N(1)—H(1B)⋯O(1) = 2.06 Å] classified using a R11(6) ring graph set descriptor. Both NH2 hydrogens are involved in the hydrogen bonding. The examination of the short contacts in the crystal structure shows that the molecules are aligned in parallel planes and held together via multiple weak C—H⋯O and C—H⋯N interactions and further stabilized via π⋯π stacking.

Acknowledgements

We are grateful to the University of South Africa and the National Research Foundation (NRF, SA) for financial assistance. The authors also thank Prof A. Lemmerer of University of the Witwatersrand for X-ray diffraction data using the single-crystal diffractometer purchased through the NRF Equipment Programme (UID:78572).

References

1. Bruker. APEX-3, SAINT+, Version 6.02 (Includes XPREP and SADABS). Bruker AXS Inc., Madison, WI, USA (2016).Suche in Google Scholar

2. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar

4. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148–155.10.1107/S090744490804362XSuche in Google Scholar

5. Gong, J.; Huang, K.; Wang, F.; Yang, L.; Feng, Y.; Li, H.; Li, X.; Zeng, S.; Wu, X.; Stöckigt, J.; Zhao, Y.; Qu, J.: Preparation of two sets of 5,6,7-trioxygenated dihydroflavonol derivatives as free radical scavengers and neuronal cell protectors to oxidative damage. Bioorg. Med. Chem. 17 (2009) 3414–3425.10.1016/j.bmc.2009.03.032Suche in Google Scholar

6. Praveen, C.; Parthasarathy, K.; Kumar, P. S.; Perumal, P. T.: Azaisoflavones: synthesis, antimicrobial evaluation and binding affinity with DNA gyrase. Indian J. Chem. 54B (2015) 373–382.Suche in Google Scholar

7. Stellenboom, N.: Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide. J. Biochem. Mol. Toxicol. 33 (2009) e22240.10.1002/jbt.22240Suche in Google Scholar

8. Farooq, S.; Ngaini, Z.: One pot and two pot synthetic strategies and biological applications of epoxy-chalcones. Chem. Africa 3 (2020) 291–302.10.1007/s42250-020-00128-5Suche in Google Scholar

9. Gomes, A. R.; Varela, C. L.; Tavares-da-Silva, E. J.; Roleira, F. M. F.: Epoxide containing molecules: a good or bad drug design approach. Eur. J. Med. Chem. 201 (2020) 112327.10.1016/j.ejmech.2020.112327Suche in Google Scholar

10. Pillai, U. R.; Sahle-Demessie, E.; Varma, R. S.: Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile. Tetrahedron Lett. 43 (2002) 2909–2911.10.1016/S0040-4039(02)00426-4Suche in Google Scholar

11. Mphahlele, M. J.; Maluleka, M. M.; Mampa, R. M.: Elucidation of the structure of the 2-amino-3,5-dibromochalcone epoxides in solution and solid state. Crystals 9 (2019) 277–290.10.3390/cryst9060277Suche in Google Scholar

12. Mphahlele, M. J.; Maluleka, M. M.: Trifluoroacetylation of indole-chalcones derived from the 2-amino-3-(arylethynyl)-5-bromo-iodochalcones. J. Fluorine Chem. 189 (2016) 88–95.10.1016/j.jfluchem.2016.07.022Suche in Google Scholar

Received: 2020-07-09
Accepted: 2020-08-02
Published Online: 2020-08-18
Published in Print: 2020-10-27

©2020 Marole M. Maluleka et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of poly[tetraaqua-bis(μ4-5-(4-carboxy-benzylamino)-isophthalato-κ4O,O′:O′′:O′′′)-(μ2-4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl-κ2N:N′)dicadmium(II)], C25H22N3O8Cd
  3. The crystal structure of 2-(2-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-2-ium-1-yl)phenoxy)acetate, C19H18N2O3
  4. Crystal structure of poly[aqua-μ2-4,4′-bipyridine-κ2N:N′)-μ2-bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κ2O,O′)zinc(II)], C38H28Cl4N4O4Zn
  5. Crystal structure of 1-(2-(1H-indol-3-yl)ethyl)-4-benzyl-3-hydroxy-3,6-diphenylpiperazine-2,5-dione, C33H29N3O3
  6. The crystal structure 2,2′-bipyridine-κ2N,N′-(2-(3-amino-4-chlorobenzoyl)benzoato-κ1O)-(2-(3-amino-4-chlorobenzoyl)benzoato-κ2O,O′)zinc(II) — ethanol (1/1), C40H32Cl2N4O7Zn
  7. Crystal structure of catena-poly[(μ3-2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ3O:O′:O′′)-bis(μ2-4,4′-bis(pyrid-4-yl)biphenyl-k1N)copper(II)], C60H40N4O9Cu
  8. The crystal structure of dimethylammonium catena-[di(μ-aqua)-bis(μ9-benzene-1,3,5-tricarboxylato)pentalithium], C20H16Li5NO13
  9. Crystal structure of tetraaqua-bis(3,5-di(pyridin-4-yl)-1,2,4-triazol-1-ido-κ1N)nickel(II) dihydrate, C24H28O6N10Ni
  10. The crystal structure of tetrakis(1-methylimidazole-κ1N)-oxido-(sulfato-κ1O)vanadium(IV), C16H24N8O5SV
  11. Crystal structure of methyl 2-(6,11-dioxo-2,3,6,11-tetrahydro-1H-benzo[f]pyrrolo[2,1-a]isoindole-5-carbonyl)benzoate, C24H17NO5
  12. Crystal structure of (E)-N′-(2-hydroxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene) nicotinohydrazide monohydrate, C20H24N4O3 ⋅ H2O
  13. Crystal structure of poly[bis(μ3-(1-(3,5-di(1H-imidazol-1-yl)phenyl)-1H-imidazole-κ3N:N′:N′′)cobalt(II)] dinitrate — N,N-dimethylformamide (1/4), C42H52N18O10Co
  14. The crystal structure bis{hexakis(1-methyl-1H-imidazole-κ1N)cobalt(II)} tetrakis(μ3-oxido)-octakis(μ2-oxido)-tetradecaoxido-octamolybdate(VI), C24H36CoMo4N12O13
  15. Crystal structure of di-μ-nicotinato-κ2N:O; κ2O:N-bis-[aqua-bis(benzyl)(nicotinato-κ2O,O′)tin(IV)], C52H48N4O10Sn2
  16. Crystal structure of dichlorido-bis[2-(2-(3-(pyridin-2-yl)-1H-1,2,4-triazol-5-yl)phenoxy)benzoic acidmanganese(II) monohydrate, C40H30N8O7MnCl2
  17. The crystal structure of benzyl 3β-acetylglycyrrhetate, C39H54O5
  18. Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2
  19. Crystal structure of trans-dichloridobis(4-chlorophenyl-κC1)(1,10-phenanthroline-κ2N,N′)tin(IV) dimethylsulphoxide solvate, C26H22Cl4N2OSSn
  20. Crystal structure of phenyl(1,3,4a-triphenyl-4a,5,6,10b-tetrahydro-1H-[1,4]oxazino[2,3-c]quinolin-5-yl)methanone, C36H28N2O2
  21. Crystal structure of (4aS,5S,6aS,6a1S, 10aS)-4a,5,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran-6(2H)-one, C15H16O2
  22. Crystal structure of [(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-κS]-(triphenylphosphine-κP)-gold(I), C28H26AuClNOPS
  23. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-P,P′)-bis[(Z)-O-isopropyl N-(4-chlorophenyl)thiocarbamato-S]-di-gold(I) acetonitrile di-solvate, C54H50Au2Cl2FeN2O2P2S2⋅2(C2H3N)
  24. Crystal structure of (6aR,6a1S,10aS)-2,4a,6a,6a1,9,10-hexahydro-7H-4,5-methanocyclobuta[4,5]naphtho[8a,1-b]pyran, C15H16O
  25. Crystal structure of 5,17-diformyl-25,26,27,28-tetrahydroxycalix[4]arene- dichloromethane, C31H26Cl2O6
  26. Crystal structure of 2-tert-butyl 1-methyl 5-{4-[(methoxycarbonyl)amino]phenyl}-2,5-dihydro-1H-pyrrole-1,2-dicarboxylate, C19H24N2O6
  27. Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C13H20AuO2PS
  28. Synthesis and crystal structure of bis(5-methyl-2-aldehyde-phenolato-κ2O1,O2)copper(II), C16H14CuO4
  29. Crystal structure of poly[triaqua-(di(2,2′-bipyridine-κ2N,N′)-μ4-silanetetrayltetrakis(benzene-4,1-diyl)tetrakis (hydrogen phosphonato)-κ4O:O′:O′′:O′′′) dicadmium(II)], C44H42N4O15P4Cd2Si
  30. Crystal structure of bis[μ2-(N,N-diethylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C22H50Ag2N2P2S4
  31. Crystal structure of bis[μ2-(pyrrolidine-1-carbodithioato-κSSS′)]-bis(triethylphosphine-κP)disilver(I), C22H46Ag2N2P2S4
  32. Crystal structure of bis[μ2-(N-(2-hydroxyethyl)-N-methylcarbamodithioato-κSSS′)]-bis(triethylphosphine-P)-di-silver(I), C20H46Ag2N2O2P2S4
  33. The crystal structure of (2E,2′E)-,2,2′-bis[1-(2-pyrazinyl)ethylidene]carbonimidic dihydrazide, C13H15N9
  34. The crystal structure of (E)-1-(quinolin-2-ylmethyl)-2-((1-(quinolin-2-ylmethyl)pyridin-2(1H)-ylidene)amino)pyridin-1-ium, C30H25BrN5
  35. Crystal structure of catena-poly[(μ2-1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ2N:N′)-(1-((benzotriazol-1-yl)methyl)-1H-1,3-imdazole-κ1N)-(methanol-κ1O)mercury(II)] dinitrate, C21H22N12O7Hg
  36. Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C16H12O3
  37. The crystal structure of oxonium hexaquaaluminium disulfate hexahydrate
  38. Crystal structure of catena{(μ2-1,10-phenanthroline-κ4N,N,N′,N′)-(μ2-1,10-phenanthroline-κ3N,N,N′)potassium(I) {[bis(2-hydroxyethyl)iminiumyl](sulfanidyl)methyl}sulfanide hemi(1,10-phenanthroline)}, {C24H16KN4, 0.5(C12H8N2), C5H10NO2S2}
  39. Crystal structure of chlorido-[(N,N-di-isobutyl)dithiocarbamato-κ2S,S′]-di(4-methylbenzyl-κC)tin(IV), C25H36ClNS2Sn
  40. Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-(4-chloro-4-pyridyl-2,2′:6′,2′′-terpyridine-κ2N,N′) rhodium(III) hexaflourophosphate, C31H29Cl2F6N3PRh
  41. The crystal structure of catena-poly[bis-(3,5-dinitro-1,2,4-triazolato-κ2N:O)-(μ2-1,4-bis(1-imidazolyl)benzene-κ2N:N′)copper(II)], C16H10CuN14O8
  42. Crystal structure of poly[triaqua-bis(μ3-3,3′-((5-carboxylato-1,3-phenylene)bis(oxy))dibenzoato)-tris(1,10-phenanthroline)cobalt(II)], C78H46N6O20Co3
  43. The crystal structure of 2,4-dihydroxybenzoic acid–nicotinamide–methanol (1/1/1), C15H18N2O6
  44. The crystal structure of aqua{N,N,N′,N′-tetrakis[(1H-benzimidazol-κN3) methyl]cyclohexane-1,2-diamine}lead(II) diacetate–methanol (1/2), C44H54N10O7Pb
  45. Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2
  46. Synthesis and crystal structure of 3-octyl-5,5-diphenylimidazolidine-2,4-dione, C23H28N2O2
  47. Synthesis and crystal structure of 2-azido-N-(4-nitrophenyl)acetamide, C8H7N5O3
  48. Crystal structure of tert-butyl (1S,2R,5R)-2-(hydroxymethyl)-4-(4-methoxyphenyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate, C17H23NO5
  49. Crystal structure of 4-[(4-methoxy-2-nitrophenyl)carbamoyl]butanoic acid, C12H14N2O6
  50. Crystal structure of 3-ethyl-1-[(E)-[(2E)-3-phenylprop-2-en-1-ylidene]amino]thiourea, C12H15N3S
  51. Crystal structure of 4,4′-bipyridin-1,1′-dium poly[bis(μ4-benzene-1,3,5-triyltris(hydrogen phosphonato-κ4O:O′:O′′:O′′′))zinc(II)], C11H11NO9P3Zn
  52. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)butane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]-di-gold(I), C44H42Au2F2N2O2P2S2
  53. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)hexane-κ2P,P′)-bis[(Z)-N-(3-fluorophenyl)-O-methylthiocarbamato-κS]digold(I), C46H46Au2F2N2O2P2S2
  54. Crystal structure of tetrakis (N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κS,S′)-(μ2(2-(pyridin-4-yl)vinyl)pyridine-κN,N′)dicadmium(II), C36H58Cd2N6O4S8
  55. Crystal structure of 4-(2-(benzo[b]thiophen-2-yl)-3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile, C20H12F6N2S
  56. Crystal structure of bis(octahydrocyclopenta[c]pyrrolium)pentachlorobismuthate(III), (C7NH14)2BiCl5
  57. The crystal structure of diaqua-tris(nitrato-κ2O,O′)-bis(4,4,5,5-tetramethyl-2-(p-pyridyl)imidazoline-1-oxyl 3-oxide-κN)samarium(III), C24H36N9O15Sm
  58. Synthesis and crystal structure of methyl 2-(2-((tert-butoxycarbonyl)amino)phenyl)-2-(4-oxo-4H-chromen-3-yl)acetate, C23H23NO6
  59. Crystal structure of O-hexyl benzoylcarbamothioate, C14H19NO2S
  60. Crystal structure of chlorido-(O-methyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)silver(I), C44H39AgClNOP2S
  61. Crystal structure of chlorido-(O-ethyl phenylcarbamothioamide-κS)-bis(triphenylphosphane-κP)-silver(I), C45H41AgClNOP2S
  62. Crystal structure of 4-[(2-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  63. Crystal structure of ethyl 4-methyl-2-oxo-5-phenyl-1,3,4-oxadiazinane-3-carboxylate, C13H16N2O4
  64. Crystal structure of catena-poly[diaqua(μ2-2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylato)cadmium(II)], C6H8CdN2O7
  65. Crystal structure of (1S)-N-(chloromethyl)-1-((4S,6aR,8aS, 8bR,9aR)-4-methoxy-6a,8a-dimethyl-1,3,4, 5,6,6a,6b,7,8,8a,9a,10,10a,10b-tetradecahydro-8bH-naphtho[2′,1′:4,5] indeno[1,2-b]oxiren-8b-yl)-N-methylethan-1-amine, C24H46ClNO5
  66. Crystal structure of 4-[(3,5-dichlorophenyl)carbamoyl]butanoic acid, C11H11Cl2NO3
  67. Crystal structure of (2Z)-2-amino-3-[(E)-[(2,4-dihydroxyphenyl)methylidene]-amino]but-2-enedinitrile, C11H8N4O2
  68. Crystal structure of 3-methyl-1-[(E)-(4-phenylbutan-2-ylidene)amino]thiourea, C12H17N3S
  69. Crystal structure of carbonyl{hydridotris[3-phenyl-5-methylpyrazol-1-yl]borato-κ3N,N′N′′}copper(I), C31H28BCuN6O
  70. Crystal structure of ethane-1,2-diylbis(diphenylphosphine oxide) – dihydrogenperoxide (1/2), C26H28O6P2
  71. Crystal structure of 2-(pyridin-2-ylamino)pyridinium chloride dibenzyldichlorostannane, [C10H10N3]Cl, C14H14Cl2Sn
  72. Crystal structure of 4-[(3-methoxyphenyl)carbamoyl]butanoic acid, C12H15NO4
  73. Crystal structure of dichlorido-bis(tri-4-tolylphosphane oxide-κO)-di(4-chlorophenyl-κC)tin(IV), C54H50Cl4O2P2Sn
  74. Crystal structure of dichloridodimethylbis(tri-4-tolylphosphane oxide-κO)-tin(IV), C44H48Cl2O2P2Sn
  75. Crystal structure of chlorido(2-methylquinolin-8-olato-κ2N,O)-bis(4-tolyl-κC)tin(IV), C24H22ClNOSn
  76. Crystal structure of (E)-dichloro(1-chloro-3-methoxyprop-1-en-2-yl)(4-methoxyphenyl)-λ4-tellane, C11H13Cl3O2Te
  77. Crystal structure of bis{N-methyl-N′-[3-(4-methoxyphenyl)-1-methylpropane-1-ylidene]carbamohydrazonothioato}zinc(II), C26H36N6O2S2Zn
  78. Crystal structure of (2-carboxy-4-(3-carboxy-5-carboxylatophenoxy)benzoato-κ2O,O′)bis(1,10-phenantroline-κ2N,N′)cobalt(II), C40H24N4O9Co
  79. The crystal structure of (3S,8R,10R,14R)-17-((2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-4,4,8,10,14-pentamethyl-12-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate, C32H52O5
  80. Crystal structure of (μ2-1,1′-bis(diphenylphosphino)ferrocene-κ2P,P′)-bis[(Z)N-(3-fluorophenyl)-O-methylthiocarbamato-S]digold(I) chloroform solvate, C50H42Au2F2FeN2O2P2S2, CHCl3
  81. Crystal structure of poly[bis(μ2-1,4-di(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-tetraoxidomolybdato(VI)-κ2O:O′)cobalt(II)], C24H20N8O4MoCo
Heruntergeladen am 29.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0346/html
Button zum nach oben scrollen