Startseite Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel

  • Muhammed Elitas

    Muhammed Elitas is Assistant Professor at Bilecik Seyh Edebali University, Bilecik, Turkey. He obtained his Bachelor’s degree from the Industrial Engineering Department, Gazi University, Turkey, in 2012. He completed his MSc at Karabuk University and finished PhD program at this University. His research interests include microstructure characterization, mechanical testing of materials, welding performance in metals and advanced metal alloys.

    EMAIL logo
Veröffentlicht/Copyright: 23. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the maximum tensile shear load bearing capacity and fracture modes of resistance spot welded DP1200 steel were investigated, and the tensile shear properties of the joints were evaluated. The effects of different welding parameters on tensile shear properties, fracture modes, microstructure, microhardness, and heat affected zone softening were examined. Weld processes were performed by using 2 to 6 bar electrode pressure as well as 5 and 7 kA weld currents. The microstructure of resistance spot welded materials was evaluated, and the hardness profiles were determined. Experimental results showed that welding current and electrode pressure had a significant effect on the load-displacement characteristics of DP1200 welds. Three different fracture modes were observed in the tensile shear loads. It was also observed that the expulsion had a negative effect on the tensile shear properties.


Muhammed Elitas Mechanical Engineering Department Engineering Faculty Bilecik Seyh Edebali University 11230 Bilecik, Turkey

About the author

Muhammed Elitas

Muhammed Elitas is Assistant Professor at Bilecik Seyh Edebali University, Bilecik, Turkey. He obtained his Bachelor’s degree from the Industrial Engineering Department, Gazi University, Turkey, in 2012. He completed his MSc at Karabuk University and finished PhD program at this University. His research interests include microstructure characterization, mechanical testing of materials, welding performance in metals and advanced metal alloys.

Acknowledgement

This work was supported by the Scientific Research Projects Coordination Unit of Karabuk University (Karabuk, Turkey). Project Number: KBUBAP-17-KP-463.

References

1 C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama: An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design, Annual Review of Materials Research 45 (2015), pp. 391-431 DOI:10.1146/annurev-matsci-070214-02110310.1146/annurev-matsci-070214-021103Suche in Google Scholar

2 M. Pouranvari: Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities, Materials Science and Technology 33 (2017), No. 15, pp. 1705-1712 DOI:10.1080/02670836.2017.133431010.1080/02670836.2017.1334310Suche in Google Scholar

3 I. Sevim: Newly revealed features of fracture toughness behavior of spot welded dual phase steel sheets for automotive bodies, Materials Testing 57 (2015), No. 11-12, pp. 960-967 DOI:10.3139/120.11079810.3139/120.110798Suche in Google Scholar

4 B. K. Zuidema: Bridging the design–manufacturing–materials data gap: material properties for optimum design and manufacturing performance in light vehicle steel-intensive body structures, The Journal of The Minerals, Metals & Materials Society 64 (2012), No. 9, pp. 1039-1047 DOI:10.1007/s11837-012-0405-210.1007/s11837-012-0405-2Suche in Google Scholar

5 M. Elitas, B. Demir: Residual stress evaluation during RSW of DP600 sheet steel, Materials Testing 62 (2020), No. 9, pp. 1-3 DOI:10.3139/120.11156010.3139/120.111560Suche in Google Scholar

6 M. Pouranvari, S. P. H. Marashi: Critical review of automotive steels spot welding: process, structure and properties, Science and Technology of Welding and Joining 18 (2013), No. 5, pp. 361-403 DOI:10.1179/1362171813Y.000000012010.1179/1362171813Y.0000000120Suche in Google Scholar

7 N. J. Den Uijl: Resistance Spot Welding of Advanced High Strength Steels, Doctoral Thesis, Delft University of Technology, Delft, Netherlands (2015) DOI:10.4233/uuid:ef6aa135-0ef3-42d5-b2a7-d270f36529ad10.4233/uuid:ef6aa135-0ef3-42d5-b2a7-d270f36529adSuche in Google Scholar

8 E. Javaheri, A. Pittner, B. Graf, M. Rethmeier: Mechanical properties characterization of resistance spot welded DP1000 steel under uniaxial tensile tests, Materials Testing 61 (2019), No. 6, pp. 527-532 DOI:10.3139/120.11134910.3139/120.111349Suche in Google Scholar

9 P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, M. Goodarzi: Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels, Materials Science and Engineering A 480 (2008), No. 1-2, pp. 175-180 DOI:10.1016/j.msea.2007.07.00710.1016/j.msea.2007.07.007Suche in Google Scholar

10 M. Pouranvari, A. Abedi, P. Marashi, M. Goodarzi: Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds, Science and Technology of Welding and Joining 13 (2008), No. 1, pp. 39-43 DOI:10.1179/174329307X24934210.1179/174329307X249342Suche in Google Scholar

11 M. Pouranvari, S. P. H. Marashi, D. S. Safanama: Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation, Materials Science and Engineering: A 528 (2011), No. 29-30, pp. 8344-8352 DOI:10.1016/j.msea.2011.08.01610.1016/j.msea.2011.08.016Suche in Google Scholar

12 E. Aydin, R. Ertan: Shunting effects on the resistance spot welding parameters of DP600, Materials Testing 62 (2020), No. 1, pp. 97-103 DOI:10.3139/120.11145510.3139/120.111455Suche in Google Scholar

13 H. Zhang, J. Senkara: Resistance Welding: Fundamentals and Applications, 2nd Ed., CRC press, New York, USA (2011)10.1201/b11752Suche in Google Scholar

14 M. Mimer, L. E. Svensson, R. Johansson: Process adjustments to improve fracture behaviour in resistance spot welds of EHSS and UHSS, Welding in the World 48 (2004), No. 3-4, pp. 14-18 DOI:10.1007/BF0326642110.1007/BF03266421Suche in Google Scholar

15 M. Bouzekri, S. Dancette, T. Dupuy, A. Lens, B. N. Oultit, V. Massardier, D. FabrÈgue, H. Klocker: An investigation of failure types in high-strength steel resistance spot welds, Welding in the World 54 (2010), No. 3-4, pp. 3-14 DOI:10.1007/BF0326348510.1007/BF03263485Suche in Google Scholar

16 X. Sun, E. V. Stephens, M. A. Khaleel: Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions, Engineering Failure Analysis 15 (2008), No. 4, pp. 356-367 DOI:10.1016/j.engfailanal.2007.01.01810.1016/j.engfailanal.2007.01.018Suche in Google Scholar

17 https://www.sae.org/publications/technical-papers/content/830126/ accessed July 27, 2020Suche in Google Scholar

18 M. Marya, K. Wang, L. G. Hector Jr, X. Gayden: Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels, Journal of Manufacturing Science and Engineering 128 (2006), No. 1, pp. 287-298 DOI:10.1115/1.213775110.1115/1.2137751Suche in Google Scholar

19 M. Pouranvari, S. P. H. Marashi: Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors, Materials Science and Engineering A 528 (2011), No. 29-30, pp. 8337-8343 DOI:10.1016/j.msea.2011.08.01710.1016/j.msea.2011.08.017Suche in Google Scholar

20 S. Ao, H. Shan, X. Cui, Z. Luo, Y. J. Chao, M. Ma: Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing, Welding in the World 60 (2016), No. 6, pp. 1095-1107 DOI:10.1007/s40194-016-0384-y10.1007/s40194-016-0384-ySuche in Google Scholar

21 M. Pouranvari, S. Sobhani, F. Goodarzi: Resistance spot welding of MS1200 martensitic advanced high strength steel: microstructure-properties relationship, Journal of Manufacturing Processes 31 (2018), No. 1, pp. 867-874 DOI:10.1016/j.jmapro.2018.01.00910.1016/j.jmapro.2018.01.009Suche in Google Scholar

22 H. Lee, N. Kim, T. S. Lee: Overload failure curve and fatigue behavior of spot-welded specimens, Engineering Fracture Mechanics 72 (2005), No. 8, pp. 1203-1221 DOI:10.1016/j.engfracmech.2004.07.01310.1016/j.engfracmech.2004.07.013Suche in Google Scholar

23 Z. Han, J. E. Indacochea: Effects of expulsion in spot welding of cold rolled sheet steels, Journal of Materials Engineering and Performance 2 (1993), No. 3, pp. 437-444 DOI:10.1007/BF0264883210.1007/BF02648832Suche in Google Scholar

24 M. Goodarzi, S. P. H. Marashi, M. Pouranvari: Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel, Journal of Materials Processing Technology 209 (2009), No. 9, pp. 4379-4384 DOI:10.1016/j.jmatprotec.2008.11.01710.1016/j.jmatprotec.2008.11.017Suche in Google Scholar

25 A. Alzahougi, M. Elitas, B. Demir: RSW junctions of advanced automotive sheet steel by using different electrode pressures, Engineering, Technology & Applied Science Research 8 (2018), No. 5, pp. 3492-3495 DOI:10.48084/etasr.234210.48084/etasr.2342Suche in Google Scholar

26 S. Fukumoto, K. Fujiwara, S. Toji, A. Yamamoto: Small-scale resistance spot welding of austenitic stainless steels, Materials Science and Engineering A 492 (2008), No. 1-2, pp. 243-249 DOI:10.1016/j.msea.2008.05.00210.1016/j.msea.2008.05.002Suche in Google Scholar

27 D. Q. Sun, B. Lang, D. X. Sun, J. B. Li: Microstructures and mechanical properties of resistance spot welded magnesium alloy joints, Materials Science and Engineering A 460 (2007), pp. 494-498 DOI:10.1016/j.msea.2007.01.07310.1016/j.msea.2007.01.073Suche in Google Scholar

28 M. Pouranvari, S. P. H. Marashi, S. M. Mousavizadeh: Failure mode transition and mechanical properties of similar and dissimilar resistance spot welds of DP600 and low carbon steels, Science and Technology of Welding and Joining 15 (2010), No. 7, pp. 625-631 DOI:10.1179/136217110X1281339316953410.1179/136217110X12813393169534Suche in Google Scholar

29 M. Pouranvari, S. P. H. Marashi, S. M. Mousavizadeh: Dissimilar resistance spot welding of DP600 dual phase and AISI 1008 low carbon steels: correlation between weld microstructure and mechanical properties, Ironmaking & Steelmaking 38 (2011), No. 6, pp. 471-480 DOI:10.1179/1743281211Y.000000002410.1179/1743281211Y.0000000024Suche in Google Scholar

30 M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi, M. Goodarzi: Effect of weld nugget size on overload failure mode of resistance spot welds, Science and Technology of Welding and Joining 12 (2007), No. 3, pp. 217-225 DOI:10.1179/174329307X16440910.1179/174329307X164409Suche in Google Scholar

31 N. J. Den Uijl, H. Nishibata, S. Smith, T. Okada, T. Van Der Veldt, M. Uchihara, K. Fukui: Prediction of post weld hardness of advanced high strength steels for automotive application using a dedicated carbon equivalent number, Welding in the World 52 (2008), No. 11-12, pp. 18-29 DOI:10.1007/BF0326667910.1007/BF03266679Suche in Google Scholar

32 M. Elitas, B. Demir: The effects of the welding parameters on tensile properties of RSW junctions of DP1000 sheet steel, Engineering, Technology & Applied Science Research 8 (2018), No. 4, pp. 3116-3120 DOI:10.48084/etasr.211510.48084/etasr.2115Suche in Google Scholar

33 B. V. Hernandez, M. L. Kuntz, M. I. Khan, Y. Zhou: Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds, Science and Technology of Welding and Joining 13 (2008), No. 8, pp. 769-776 DOI:10.1179/136217108X32547010.1179/136217108X325470Suche in Google Scholar

34 M. I. Khan, M. L. Kuntz, Y. Zhou: Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels, Science and Technology of Welding and Joining 13 (2008), No. 3, pp. 294-304 DOI:10.1179/174329308X27173310.1179/174329308X271733Suche in Google Scholar

35 V. B. Hernandez, S. K. Panda, M. L. Kuntz, Y. Zhou: Nanoindentation and microstructure analysis of resistance spot welded dual phase steel, Materials Letters 64 (2010), No. 2, pp. 207-210 DOI:10.1016/j.matlet.2009.10.04010.1016/j.matlet.2009.10.040Suche in Google Scholar

36 V. H. B. Hernandez, S. K. Panda, Y. Okita, N. Y. Zhou: A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation, Journal of Materials Science 45 (2010), No. 6, pp. 1638-1647 DOI:10.1007/s10853-009-4141-010.1007/s10853-009-4141-0Suche in Google Scholar

37 F. Nikoosohbat, S. Kheirandish, M. Goodarzi, M. Pouranvari, S. P. H. Marashi: Microstructure and failure behaviour of resistance spot welded DP980 dual phase steel, Materials Science and Technology 26 (2010), No. 6, pp. 738-744 DOI:10.1179/174328409X41499510.1179/174328409X414995Suche in Google Scholar

38 M. Xia, E. Biro, Z. Tian, Y. N. Zhou: Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels, ISIJ International 48 (2008), No. 6, pp. 809-814 DOI:10.2355/isijinternational.48.80910.2355/isijinternational.48.809Suche in Google Scholar

39 V. B. Hernandez, S. S. Nayak, Y. Zhou: Tempering of martensite in dual-phase steels and its effects on softening behavior, Metallurgical and Materials Transactions A 42 (2011), No. 10, pp. 3115-3129 DOI:10.1007/s11661-011-0739-310.1007/s11661-011-0739-3Suche in Google Scholar

40 S. S. Nayak, V. B. Hernandez, Y. Zhou: Effect of chemistry on nonisothermal tempering and softening of dual-phase steels, Metallurgical and Materials Transactions A 42 (2011), No. 11, pp. 3242-3248 DOI:10.1007/s11661-011-0868-810.1007/s11661-011-0868-8Suche in Google Scholar

41 S. Dancette, V. Massardier-Jourdan, D. Fabrègue, J. Merlin, T. Dupuy, M. Bouzekri: HAZ microstructures and local mechanical properties of high strength steels resistance spot welds, ISIJ International 51 (2011), No. 1, pp. 99-107 DOI:10.2355/isijinternational.51.9910.2355/isijinternational.51.99Suche in Google Scholar

42 K. Kunishige, N. Yamauchi, T. Taka, N. Nagao: Softening in weld heat affected zone of dual phase steel sheet for automotive wheel rim, SAE Transactions 92 (1983), No. 2, pp. 1063-1067 DOI:10.4271/83063210.4271/830632Suche in Google Scholar

43 M. Uchihara, K. Fukui: Tailored blanks of high strength steels-comparison of welding processes, Welding in the World 46 (2002), No. 7-8, pp. 41-48 DOI:10.1007/BF0326338910.1007/BF03263389Suche in Google Scholar

44 V. H. Baltazar Hernandez: Effects of Martensite Tempering on HAZ-Softening and Tensile Properties of Resistance Spot Welded Dual-Phase Steels, Doctoral Thesis, University of Waterloo, Waterloo, Canada (2010)Suche in Google Scholar

45 F. Hayat, B. Demir, M. Acarer: Tensile shear stress and microstructure of low carbon dual phase Mn-Ni steels after spot resistance welding, Metal Science and Heat Treatment 49 (2007), No. 9-10, pp. 484-489 DOI:10.1007/s110410070090-x10.1007/s110410070090-xSuche in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Artikel in diesem Heft

  1. Frontmatter
  2. Frontmatter
  3. Materialography
  4. Effect of cooling rates of solution treatment on rejuvenation heat-treated microstructures of a cast nickel-based superalloy
  5. Component-oriented testing and simulation
  6. Characterization of the torsional vibration behavior of circular and rectangular cross-sectional arc springs: Theory and experiments
  7. Materialography
  8. Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering
  9. Materials testing for welding and additive manufacturing applications
  10. Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel
  11. Ultra-sonic testing
  12. Ultrasonic C-scan techniques for the evaluation of impact damage in CFRP
  13. Component-oriented testing and simulation
  14. Optimum structural design of seat frames for commercial vehicles
  15. Wear testing
  16. Investigation of wear on the upper edges of webs of thin-film coated single-screw extruders processing pure polymers
  17. Materials testing for welding and additive manufacturing applications
  18. The corrosion behavior of marine aluminum alloy MIG welded joints in a simulated tropical marine atmosphere
  19. Component-oriented testing and simulation
  20. A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems
  21. Fatigue testing
  22. Preparation and fatigue behavior of graphene-based aerogel/epoxy nanocomposites
  23. Component-oriented testing and simulation
  24. Manufacturing of Al-Li-Si3N4 metal matrix composite for weight reduction
  25. Materials testing for welding and additive manufacturing applications
  26. Strength of double-reinforced adhesive joints
  27. Production-oriented testing
  28. Variation of electrode materials and parameters in the EDM of an AA7075-TiO2 composite
  29. Analysis of physical and chemical properties
  30. Soft chemical processing approach for the valorization of seafood waste by-products as a source of bioactive polymers
Heruntergeladen am 12.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2020-0019/html
Button zum nach oben scrollen