Startseite Hankel determinants of second and third order for the class š“¢ of univalent functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hankel determinants of second and third order for the class š“¢ of univalent functions

  • Milutin Obradović und Nikola Tuneski EMAIL logo
Verƶffentlicht/Copyright: 8. Juni 2021
Verƶffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we give the upper bounds of the Hankel determinants of the second and third order for the class š“¢ of univalent functions in the unit disc.

MSC 2010: 30C45; 30C50; 30C55
  1. (Communicated by Stanis lawa Kanas )

References

[1] Dienes, P.: The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, New York-Dover: Mineola, NY, USA, 1957.Suche in Google Scholar

[2] Duren, P. L.: Univalent Function, Springer-Verlag, New York, 1983.Suche in Google Scholar

[3] Janteng, A.—Halim, S. A.—Darus, M.: Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1(13) (2007), 619–225.Suche in Google Scholar

[4] Lebedev, N. A.: Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975 (in Russian).Suche in Google Scholar

[5] Obradović, M.—Ponnusamy, S.: New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44 (2001), 173–191.10.1080/17476930108815354Suche in Google Scholar

[6] Obradović, M.—Ponnusamy, S.: On the class š“¤, Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application, 2011, pp. 11–26.Suche in Google Scholar

[7] Obradović, M.—Ponnusamy, S.—Wirths, K. J.: Geometric studies on the class š“¤(Ī»), Bull. Malays. Math. Sci. Soc. 39(3) (2016), 1259–1284.10.1007/s40840-015-0263-5Suche in Google Scholar

[8] Obradović, M.—Tuneski, N.: Some properties of the class š“¤, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73(1) (2019), 49–56.10.17951/a.2019.73.1.49-56Suche in Google Scholar

[9] Obradović, M.—Tuneski, N.: New upper bounds of the third Hankel determinant for some classes of univalent functions, submitted, https://arxiv.org/abs/1911.10770.Suche in Google Scholar

[10] Shi, L.—Srivastava, H. M.—Arif, M.—Hussain, S.—Khan, H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), 598.10.3390/sym11050598Suche in Google Scholar

Received: 2020-01-20
Accepted: 2020-09-14
Published Online: 2021-06-08
Published in Print: 2021-06-25

Ā© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0010/html
Button zum nach oben scrollen