Startseite Global stability analysis and control of leptospirosis
Artikel Open Access

Global stability analysis and control of leptospirosis

  • Kazeem Oare Okosun EMAIL logo , M. Mukamuri und Daniel Oluwole Makinde
Veröffentlicht/Copyright: 23. August 2016

Abstract

The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction number and investigate the existence and stability of equilibria. The threshold condition for disease-free equilibrium is found to be locally asymptotically stable and can only be achieved when the basic reproduction number is less than unity. The model is found to exhibit the existence of multiple endemic equilibria. Furthermore, to assess the relative impact of each of the constant control parameters measures the sensitivity index of the basic reproductive number to the model’s parameters are calculated. In the time-dependent constant control case, Pontryagin’s Maximum Principle is used to derive necessary conditions for the optimal control of the disease. The cost-effectiveness analysis is carried out by first of all using ANOVA to check on the mean costs. Then followed by Incremental Cost-Effectiveness Ratio (ICER) for all the possible combinations of the disease control measures. Our results revealed that the most cost-effective strategy for the control of leptospirosis is the combination of the vaccination and treatment of infective livestocks. Though the combinations of all control measures is also effective, however, this strategy is not cost-effective and so too costly. Therefore, more efforts from policy makers on vaccination and treatment of infectives livestocks regime would go a long way to combat the disease epidemic.

MSC 2010: 92B05; 93A30; 93C15

1 Introduction

Leptospirosis is caused by numerous distinct serovars of a spiral-shaped bacterium known as Leptospira interrogans and it is a disease of animals and humans. These serovars are harboured by a wide range of animals, and all of them are capable of causing illness in humans. Leptospira serovars Pomona and hardjo are particularly important in livestock, however the number of other serovars of concern, detected in domestic animals and in humans, is fast growing (Alabama Cooperative Extension Sytems (ANR-0858)). Leptospirosis is a cause of economic losses in the farming of animals. Many infected animals do not show signs of clinical disease.

Leptospirosis is commonly spread by the urine of infected animals and with moisture acting as an important factor of the survival of the bacteria in the environment. Livestock pick up infection by contact with pasture or water contaminated by the urine of infected livestock or wild animals. In warm, moist conditions the organisms may survive in the environment and cause infection for several weeks, so that under suitable climate conditions, many livestock are almost continually exposed for long periods [1].

Infections can range from asymptomatic or sub-clinical to acute and fatal. Symptoms of acute leptospirosis in animals include sudden agalactia in the lactating female, icterus and haemoglobinuria in the young, nephritis and hepatitis in dogs, and meningitis. Chronic leptospirosis can cause abortion, stillbirth, high mortality among young calves, decreased milk production, runting, and infertility. Often chronically infected animals remain as asymptomatic carriers for life with the organism localized in the kidneys and in the reproductive organs and while horses can develop periodic ophthalmia as a result of leptospirosis [2]. In humans, leptospirosis is capable of causing headaches, fever, chills, sweats and myalgia. Also other symptoms may include lethargy, aching joints, and long periods of sickness. Some highly pathogenic serovars may cause pulmonary haemorrhaging and death. While mild type leptospirosis is probably the most common form of infection, they can sometimes be chronic in nature and have a mental component to their clinical manifestations.

The disease can either be transmitted directly between animals or indirectly through the environment. Leptospirosis is of increasing importance as an occupational disease as intensive farming practices become more widely adopted. For instance, during 1999, those working in agricultural industries in Australia accounted for 35.3% of notifications while those working in livestock industries accounted for 22.9% of notifications [2].

There have been applications of optimal control methods to epidemiological models, but most of these studies focused on HIV and TB diseases dynamics. The authors in [36] studied the optimal chemotherapy treatment in controlling the virus reproduction in an HIV patient. In [710], optimal control was used to minimize the costs of both diseases and treatment. In [1112] the authors used optimal control to investigate the best strategy for educational campaigns during the outbreak of an epidemic and at the same time minimizing the number of infective humans. The authors in [13] also used Optimal control to study a nonlinear mathematical SIR epidemic model with a vaccination program. Optimal control was applied to study the impact of chemo-therapy on malaria disease with infective immigrants and the impact of basic amenities [1415], while [16] studied the effects of prevention and treatment on malaria, using an SEIR model. It was also used in a malaria model with genetically modified mosquitoes but without human population [17]. For other applications of optimal control to modelling of infectious diseases [1821].

Very little has been done in the area of applying optimal control theory to study and analyse the dynamics of leptospirosis. Recently, the authors in [22] studied the dynamical interactions between leptospirosis infected vector and human population. While [23] considered a leptospirosis epidemic model to implement optimal campaign using multiple control variables. However, none of these studies carried out cost-effectiveness analysis of the control strategies.

In this paper, an extension of the SIR Leptospirosis model presented in [22] is considered by incorporating both human and vector populations (livestocks) and also incorporates vector vaccination, treatments and prevention strategies. The aim is to gain some insights into the best intervention for minimizing the transmission of the disease within the population and to explore the impacts of various intervention scenarios, namely, prevention, vaccination and treatment. We analyse the stability and bifurcation of the model, then we incorporate into the model appropriate cost functions in order to study and determine the possible impacts of these strategies in controlling the disease. We further carried out detailed qualitative optimal control analysis of the resulting model and give the necessary conditions for optimal control of the disease using Pontryagin’s Maximum Principle, in order to determine optimal strategies for controlling the spread of the disease. The cost-effectiveness analysis of the control strategies is further considered, in order to ascertain the most cost-effective out of the strategies.

The organization of the paper is as follows, in Section 2, we derive a model consisting of ordinary differential equations that describes the interactions between humans and livestocks populations and the underlying assumptions. Section 3 is devoted to the mathematical analysis of the leptospirosis model. In Section 4, the optimal control analysis of the disease is presented. In Sections 5, the simulation results are shown to illustrate the effects of preventions, vaccination and treatment. The cost-effectiveness analysis is presented in Section 6 while the conclusions are in Section 7.

2 Model formulation

The model sub-divides the total human population, denoted by Nh, into sub-populations of susceptible individuals (Sh), individuals with leptospirosis symptoms (Ih), recovered human (Rh). So that Nh = Sh + Ih + Rh.

The total vector (livestock) population, denoted by Nv, is sub-divided into susceptible vector (Sv), infectious vector (Iv), recovered vector (Rv) and vaccinated vector (Vv). Thus, Nv(t) = Sv + Iv + Rv + Vv.

The model is given by the following system of ordinary differential equations:

dShdt=Λh+σhRh(1μ1)βmβShμhShdIhdt=(1u1)βmSh(u2γ)+uh+δh)IhdRhdt=u2γIh(σh+μh)RhdSvdt=(1u3)Λv(1u1)βmλSvμvSv+σvRv+τVvdIvdt=(1u1)βmλSv+(1u1)bβmλVv(u4α+μv+δv)IvdRvdt=u4αIv(σv+μv)RvdVvdt=u3Λv(τ+μv)Vv(1u1)bλβmVv(1)

where βm=Iv+Ih.

Susceptible individuals are recruited at a rate Λh. Susceptible individuals acquire leptospirosis through contact with infectious vectors and infectious humans at a rate (Iv + Ih)β. Infected individuals recovered from the disease at a rate γ. Individuals with the disease are treated under control, at a rate u2(t), while u1(t) is the control efforts on prevention. Non treated infected individuals die at a rate δh. Recovered individual loose immunity at a rate σh and become susceptible again. The term μh is the natural death rate.

Susceptible vector (Sv) are generated at a rate Λv, where a proportion u3 ∈ [0, 1] is successfully vaccinated individual vector. Vectors with the disease are treated under control, at a rate u4(t). Leptospirosis is acquired through contacts with infected humans and infectious vectors at a rate (Iv + Ih)λ. Leptospirosis infected livestocks are assumed to suffer death due to natural causes and disease induced death rates, μv and δv respectively. The vectors recovery rate is α and due to wanning effect some vaccinated vectors will move to the infected class at a rate bβmλ, where (1 — b) ∈ [0, 1] is the efficacy of the vaccine or they loose their immunity completely and move to the susceptible class at a rate τ.

3 Mathematical analysis of the Leptospirosis model

3.1 Positivity and boundedness of solutions

For the leptospirosis transmission model (1) to be epidemiologically meaningful, it is important to prove that all solutions with non-negative initial data will remain non-negative for all time.

Theorem 3.1

IfSh(0), Ih(0), Rh(0), Sv (0), Iv(0), Rv (0), Vv(0) are non negative, then so areSh(t), Ih(t), Rh(t), Sv (t), Iv (t), Rv (t) andVv (t) for all timet > 0. Moreover,

limsuptNh(t)ΛhμhandlimsuptNv(t)Λhμv.(2)

Furthermore, ifNh(0)Λhμh, thenNh(t)Λhμh, and ifNv(0)Λhμh, thenNv(t)Λhμh.

The proof is omitted for simplicity. The feasible region for system (1) is therefore given by

D=Dh×DvR+3×R+4(3)

where,

Dh={(Sh,Ih,Rh)R+3:Sh+Ih+RhΛhμh},(4)

and

Dv={(Sv,Iv,Rv)R+4:Sv+Iv+Rv+VvΛvμv}.(5)

D is positively invariant.

3.2 Steady states, stability and bifurcation

The disease-free equilibrium (DFE) of the disease model (1) exists only when u1 = 0 and other controls are constants, it is given by

ε0=Λhμh,0,0,Λh(τ+μv(1u3))μh(τ+μv,0,0,u3Λvτ+μv.(6)

The basic reproduction number of the model (1), Rhv, is calculated by using the next generation matrix [24]. It is given by

Rhv=βΛhμh(γ+δh+μh)+λΛv[τ+(1(1b)u3)](τ+μv)(α+δv+μv).(7)

It is clear that the vaccination would results in the reduction of Rhv. Hence the total vaccination coverage is given as

u3=11bRvq(τ+1)+RhqRhvRvq(8)

where,

Rhq=βΛhμh(γ+δh+μh),Rvq=λΛv(1+τ)(τ+μv)(α+δv+μv)

Further, using Theorem 2 in [24], the following result is established.

Proposition 3.2

The DFE of the model (1), is locally asymptotically stable if Rhv < 1, and unstable if Rhv > 1.

3.3 Global stability of disease free

Here in this section, the global behaviour of the equilibrium system (1) is analyzed.

Theorem 3.3

If Rhv < 1, the disease free equilibrium is globally asymptotically stable in the interior of Ω

Proof

Consider the following Lyapunov function:

P(t)=(α+μv+δv)Ih+(γ+μh+δh)Iv(9)

Calculating the time derivative of P along the solutions of system (1), the following is obtain,

dP(t)dt=(α+μv+δv)dIhdt+(γ+uh+δh)dIvdt=(α+μv+δv)βSh(Ih+Iv)(u2γ+μh+δh)Ih+(γ+μh+δh)λSv(Ih+Iv)+b(Ih+Iv)λVv(u4α+μv+δv)Iv(α+μv+δv)βΛhIhμh+(α+μv+δv)βΛhIvμh(α+μv+δv)(γ+μh+δh)Ih+Ih(γ+μh+δh)λΛv(τ+μv(1u3))μv(τ+μv)+Iv(γ+μh+δ)λΛv(τ+μv(1u3))μv(τ+μv)+Ih(γ+μh+δh)bu3λΛvτ+μv+Iv(γ+μh+δ)bu3λΛvτ+μvIv(γ+μh+δ)(α+μv+δv)Ih(γ+μh+δh)(α+μv+δv)1RhvIv(γ+μh+δh)(α+μv+δv)1Rhv=(Ih+Iv)(γ+μh+δh)(α+μv+δv)1Rhv(10)

Thus dP(t)dt is negative whenever Rhv<1.dP(t)dt=0 if and only if Ih + Iv = 0 or in the case when Rhv = 1. Hence, the largest compact invariant set in Sh,Ih,IvΩ,dP(t)dt=0, whenever Rhv ≤ 1, is the singleton ε0. Therefore, LaSalle’s invariance principle [26] implies that ε0 is globally asymptotically stable in Ω. This completes the proof. □

3.4 Endemic Equilibrium

Next we calculate the endemic steady states. Solving system (1) at the equilibrium we obtain βm=0 (which corresponds to the DFE) or

Ω0βm3+Ω1βm2+Ω2βm+Ω3=0(11)

where

Ω0=1Ω1=zE(1Rw)Ω2=G1E(1Rf)Ω3=χ[1Rhv],(12)
Rhv2=Rhq+Rvq+βΛhμh(γ+δh+μh)+λΛv[τ+(1(1b)u3)](τ+μv)(α+δv+μv),E=bβλ2[μv(α+δv+μv)+(δv+μv)σv][μh(γ+δh+μh)+(δh+μh)σh],Q1=bλ2μh(γ+δh+μh)(μh+σh)[μv(α+δv+μv)+(δv+μv)σv],Q2=βλ[μh(γ+δh+μh)+(δh+μh)σh]F3b(μv+δv)(τ+μv)(α+δv+μv)(τ+(1(1b)u3),Z=Q1+Q2Rw2=Q1Rhq+Q2RvqZF1=λμh(μh+σh)(γ+δh+μh)(τ+(1+b)μv)[μv(α+δv+μv)+(δv+μv)σv],F2=βμh(α+δv+μv)(τ+uv)(μv+σv)[μh(γ+δh+μh)+(δh+μh)σh],F3=[(τ+(1+b)μv)[μv(α+δv+μv)+(δv+μv)σv]+bαμv]G1=λ[μh(μh+σh)(γ+δh+μh)(τ+uv)[uv(α+δv+μv)+(δv+μv)σv]b[Λv(μv+σv)+βΛhαμvσv)(μh+σh)]+bμv(α+δv+μv)(μv+σv)],χ=uvμh(μv+σv)(μh+σh)(τ+uv)(α+δv+μv)(γ+δh+μh)bβλ2[μv(α+δv+μv)+(δv+μv)σv][μh(γ+δh+μh)+(δh+μh)σh],Rf2=F12Rhq+F22RvqG1.(13)
Remark

The system (1) has a unique endemic equilibrium E* if Rhv > 1 and Cases 1–3 (as declared in Table 1) are satisfied. It could have more than one endemic equilibrium if Rhv > 1 and Case 4 is satisfied; it could have 2 endemic equilibria if Rhv < 1 and Cases 2–4 are satisfied.

Table 1

Number of possible positive real roots of Pβm for Rhv > 1 and Rhv < 1

CasesΩ0Ω1Ω2Ω3RhvNumber of sign changeNumber of positive real roots
1++++Rhv < 100
+++-Rhv > 111
2++-+Rhv < 120, 2
++--Rhv > 111
3+--+Rhv < 120, 2
+---Rhv > 111
4+-++Rhv < 120, 2
+-+-Rhv > 131, 3

3.4.1 Global stability of endemic equilibrium

Theorem 3.4

The model equations has a unique positive endemic equilibrium whenever Rhv > 1 and its globally asymptotically stable.

Letting Rhv > 1 so that the endemic equilibrium exists. We consider the non-linear Lyapunov function

L=ShShShlnShSh+IhIhIhlnIhIh+g1RhγRhRhlnRhRh+SvSvSvlnSvSv+IvIvIvlnIvIv+RvRvRvlnRvRv+VvVvVvlnVvVv(14)

where g1 = (u2y + μh + δh), g2 = (σ2 + μh), g3 = (u4α + μv + δv), g4 = (σv + μv). Differentiating the above equation (14), we have

dLdt=1ShShdShdt+1IhIhdIhdt+g1γ1RhRhdRhdt+1SvSvdSvdt+1IvIvdIvdt+1RvRvdRvdt+1VvVvdVvdt(15)

so

dLdt=1ShSh[Λh+σhRh+(1u1)ββmSh+μhShΛhσRh(1u1)ββmShμhSh]+1IhIh[(1u1)ββmShg1Ih]+g1γ1RhRh[u2γIhg2Rh]+1SvSv[(1u3)Λv+(1u1)λβmSv+μvSv+σvRv+τVv(1u3)Λv(1u1)λβmSvμvSvσvRvτVv]+1IvIv[(1u1)λβmSv+(1u1)bλβmVvg3Iv]+g3α1RvRv[u4αIvg4Rv]+1IvVv[u3Λv+(1u1)bλβmVv+(τ+uv)Vvu3Λv](1u1)bλβmVv(τ+μv)Vv](16)

Therefore, simplifying further, we have,

μhS2ShShShSh+σRh1RhRh+RhShSh1RhRhg1g2ShγSh1RhRh+1u1ββmSh1βmβmShShShβmIShβmIh+g1Ih1IhIhu2IhIh1RhRh+μvSv2SvSvSvSv+σvRv1SvSvRvRv+RvSvRvSv+τVv1SvSvVvVvVvSvVvSv+1u1λβmSv1SvSv+βmβmSvβmIvSvβmIv+g3IvIv1IvIvg3u4IvIvg3u4IvRvIvRv+g3g4Rvα1RvRv+τ+μvVv2VvVvVvVv+b1u1λβmVv1VvVv+βmβmVvβmIvVvβmIv(17)

since the arithmetic mean exceeds the geometric mean value [25], it follows that

2ShShShSh01RhRh01RhRhg1g2ShγSh1RhRh01βmβmShShShβmIShβmIh01IhIhu2IhIh1RhRh02SvSvSvSv01SvSvRvRv+RvSvRvSv01SvSvVvVvVvSvVvSv01SvSv+βmβmSvβmIvSvβmIv01IvIvg3u4IvIvg3u4IvRvIvRv01RvRv02VvVvVvVv01VvVv+βmβmVvβmIvVvβmIv0(18)

Since all the model parameters are non-negative, it follows that L˙0 for Rhv > 1. Hence, by LaSalle’s Invariance Principle [26], every solution of the equation in the model approaches the endemic equilibrium point as t → ∞ whenever Rhv > 1.

3.5 Sensitivity analysis of model parameters

The sensitivity analysis to determine the model robustness to parameter values is investigated. This is in order to help us know the parameters that have a high impact on the reproduction number (Rhv). Adopting the approach in ([1427]), we analyzed the reproduction number to determine whether or not vaccination, treatment of infectives and mortality can lead to the effective elimination or control of the disease in the population.

Definition

The normalized forward sensitivity index of a variable, h, that depends differentially on a parameter, l, is defined as:

Υlh:=hlxlh.(19)

3.5.1 Sensitivity indices of Rhv

We therefore derive the sensitivity of Rhv to each of the thirteen different parameters of the model. Using the parameter values in Table 3, the detail sensitivity indices of Rhv resulting from the evaluation with respect to the parameters of the model are shown below.

Table 2

Sensitivity indices of model parameters to Rhv

ParameterDescriptionSensitivity index
μvlivestock death rate-1.1057
βhuman transmission rate0.9906
Λhhumans recruitment rate0.9906
γhuman rate of recovery-0.5887
δhhumans disease induced death rate-0.2867
λhdeath rate in humans-0.0147
λlivestocks transmission rate0.00944
Λvrecruitment rate of livestocks0.00944
αlivestocks recovery rate-0.003825
u3proportion vaccinated-0.003059
δvlivestocks disease induced death-0.001913
τwaning rate from0.00152
bvaccine efficacy0.0003398
Table 3

Description of Variables and Parameters of the Leptospirosis Model (1). The units of μh, μv, α, Λh, Λv, τ, δh, δv are day −1, the other parameters are without units.

ParameterEstimated valueRef
μh4.6x10−5[34]
δh0.4x10−3[35]
μv1.8x10−3[34]
β0.03assumed
λ0.23[22]
α2.7x10−3[35]
Λh1.34assumed
Λv1.71assumed
τ0.013[22]
δv0.01assumed
b0.002assumed

Table 2, above, implies that an increase in human treatment γ, livestock treatment α or increase in the mosquito mortality μv have positive impact in controlling leptospirosis in the community. The parameters are arranged from the most sensitive to least, the most sensitive parameters are proportion of mosquito biting and contact rates μv, β Λh. Increasing (or decreasing) the transmission rate β by 10%, increases (or decreases) the Rhv by 9.9%, similarly increasing (or decreasing) the humans recruitment rate, Λh, by 10%, increases (or decreases) the Rhv by 9.9%. In the same way, increasing (or decreasing) the human recovery rate γ, decreases (or increases) Rhv, by 5.89% and in like manner increasing (or decreasing) the livestock recovery rate α decreases (or increases) Rhv, by 0.03%.

In the next section, we apply optimal control method using Pontryagin’s Maximum Principle to determine the necessary conditions for the optimal control of the impact of control measures on leptospirosis disease.

4 Optimal control analysis of the Leptospirosis model

We seek here to minimize the number of infective individuals and the cost of applying prevention, treatment and vaccination controls. The objective functional that we consider is given by

J=minu1;u2;u3;u40tf(w1Iv+w2Ih+w3u12+w4u22+w5mu32+w6u42)dt(20)

subject to differential equations system (1).

Here w1Iv and w2Ih are the cost associated with a number Iv of infected vectors and It of infected individuals. The term w5mu32 is the cost associated with vaccination, where m is the number of vectors vaccinated and w4u22,w6u42 are the costs associated with human and vector treatments respectively. The cost associated with preventive measure is w3u12, while tf is the time period of the intervention and the coefficients, w1, w2, w3, w4, w5, w6 are thebalancing cost factors due to scales and importance of the ten parts of the objective function. In line with [35, 15, 28], a linear function for the cost on infection, w1Iv, w2Ih, and quadratic forms for the cost on the controls w3u12,w4u22,w5mu32 and w6u42.

We seek an optimal control u1#,u2#,u3#,u4# such that

Ju1,#u2,#u3,#u4#=minu1,u2,u3,U4UJu1,u2,u3,u4(21)

where U = {u: u is measurable and 0 ≤ ut, (t) ≤ 1 for t ∈ [0, tf], i = 1, 2, 3,4} is the control set.

The necessary conditions that an optimal control must satisfy come from the Pontryagin’s Maximum Principle [29]. This principle converts (1) and (20) into a problem of minimizing pointwise a Hamiltonian H, with respect to (u1, u2, u3, u4)

H=w1Iv+w2Ih+w3u12+w4u22+w5mu32+w6u62+MShΛh+σhRh1u1βIv+IhShμhSh+MIh1u1βIv+IhShu2γ1+ıh+μhIh+MRhu2γIhσh+μhRh+MSv1u3Λv1u1λIv+IhSvμvSv+σvRv+τVv+MIv1u1λIv+IhSv+1u1bλIv+IhVvu4α+δv+μvIv+MRvu4αIvσv+μvRv+MVvu3Λvτ+μvVv1u1bλIv+IhVv(22)

where MSh,MIh,MRh,MSv,MIv,MRv and MVv are the adjoint variables or co-state variables solutions of the following adjoint system:

dMShdt=(1u1Iv+IhβMShMIh+μhMShdMIhdt=w2+1u1βShMShMIh+u2γ+μh+δhMIhu2γMRh+1u2λSvMSvMIv+bλMVvMIvdMRhdt=σhMSh+σh+μhMRhdMSvdt=1u1λIv+IhMSvMIv+μvMSvdMIvdt=w1+1u1βMShMIhSh+1u1λMSvMIvSv+bλMVvMIvVv+u4α+μv+δvMIvu4αMRvdMRvdt=σvMSv+σv+μvMRvdMVvdt=τMSv+1u1bλIv+IhMVvMIv+τ+μvMVv(23)

satisfying the transversality conditions

MShtf=MIhtf=MRhtf=MSVtf=MIVtf=MRvtf=MVvtf=0.(24)

By applying Pontryagin’s Maximum Principle [29] and the existence result for the optimal control from [30], we obtain

Theorem 4.1

The optimal control vectoru1#,u2#,u3#,u4# that minimizes J over Uis given by

u1#=max0,min1,β(MIhMSh)Iv+IhSh+λ(MIvMSv)Iv+IhSv+bλ(MIvMVv)Iv+IhVv2w3u2#=max0,min1,γ(MRhMIh)Ih2w4u3#=max0,min1,Λv(MVvMSv)2w5u4#=max0,min1,α(MRvMIv)Iv2w6(25)

whereMSh,MIh,MRh,MSv,MIv,MRvandMVvare the solutions of (23)-(24).

Proof

From Corollary 4.1, [30], the existence of optimal control results from the convexity of the integrand of J with respect to u1, u2, u3 and u4, a priori boundedness of the state solutions, and the Lipschitz property of the state system with respect to the state variables. System (23) is obtained by differentiating the Hamiltonian function, evaluated at the optimal control. Furthermore, by equating to zero the derivatives of the Hamiltonian with respect to the controls, we obtain (see [31])

u1=u~1:=(βMIhMSh)(Iv+Ih)Sh+λMIvMSv)(Iv+Ih)Sv+bλMIvMVv)(Iv+Ih)Vv2w3,u2=u~2:=γ(MRhMIh)Ih2w4,u3=u~3:=Λv(MVvMSv)2w5andu4=u~4:=α(MRvMIv)Iv2w6.

By standard control arguments involving the bounds on the controls, we conclude

u1#=0ifu~10u~1if0<u~1<1,1ifu~11,u2#=0ifu~20u~2if0<u~2<1,1ifu~21(26)
u3#=0ifu~30u~3if0<u~3<1and1ifu~31,u4#=0ifu~40u~4if0<u~4<11ifu~41(27)

which leads to (25). Due to the a priori boundedness of the state and adjoint functions and the resulting Lipschitz structure of the ODEs, we obtain the uniqueness of the optimal control for small tf. The uniqueness of the optimal control quadruple follows from the uniqueness of the optimality system, which consists of (1), (23), (24) and (25). □

There is a restriction on the length of time interval in order to guarantee the uniqueness of the optimality system. This is due to the opposite time orientations of the optimality system; the state problem has initial values and the adjoint problem has final values. This restriction is very common in control problems (see [6, 28, 32, 33]).

Next we discuss the numerical solutions of the optimality system and the corresponding optimal control pair, the parameter choices, and the interpretations from various cases.

5 Numerical results

In this section, we show the numerical simulations of the impacts of the optimal control strategies on leptospirosis transmission. The optimal control is obtained by solving the optimality system that consists of the state system (1) and adjoint system (23), (24) and (25). We use an iterative scheme to solve the optimality system. We first solve the state equations with a guess for the controls over the simulated time using fourth order Runge-Kutta scheme. Then, we use the current iterations solutions of the state equation to solve the adjoint equations by a backward fourth order Runge-Kutta scheme. Finally, we update the controls by using a convex combination of the previous controls and the value from the characterizations (25). This process is repeated and iterations are stopped if the values of the unknowns at the previous iterations are very close to the ones at the present iterations ([31]).

Due to space, the results for the best four (4) most effective control strategies out of the following control strategies considered are presented.

  1. Strategy A: Combination of treatment of humans and vaccination of vectors

  2. Strategy B: Combination of prevention control on humans and vaccination of vectors

  3. Strategy C: Combination of prevention control on humans, treatment of infective humans and vaccination

  4. Strategy D: Combination of prevention control on humans and treatment of infective humans

  5. Strategy E: Combination of vaccination of vectors and treatment of infective vectors

  6. Strategy F: Combination of prevention control on humans, vaccination and treatment of infective vectors

  7. Strategy G: Combination of prevention control on humans and treatment of infective vectors

  8. Strategy H: Combination of treatment of humans, vaccination and treatment of infective vectors

  9. Strategy I: Combination of treatment of humans and treatment of infective vectors

  10. Strategy J: Combination of prevention control on humans, treatment of humans, vaccination and treatment of infective vectors

  11. Strategy K: Combination of prevention control on humans, treatment of humans and treatment of infective vectors

From the results the best four (4) strategies are Strategies B, E, G and I. These are shown below.

Strategy B: Optimal prevention of humans and vaccination of vectors

The prevention of humans control u1 and the vaccination control u3 of vectors are used to optimize the objective function J while we set other controls u2 and u4 to zero. We observed in Figure 3(a) and 3(b) that due to the control strategy, the number of infected humans (Ih) and infected vectors (Iv) decreases in the community. This shows that the spread of the disease can be controlled through effective prevention of humans and vaccination of vectors strategy. This strategy further shows no significant impact on the total recovered vectors and the total vectors vaccinated, Figure 3(c) and 3(d).

Fig. 1 Flow diagram for the disease transmission. The blue balls represent the vector population, while the red balls indicate the human population
Fig. 1

Flow diagram for the disease transmission. The blue balls represent the vector population, while the red balls indicate the human population

Fig. 2 Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and vaccination of vectors.
Fig. 2

Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and vaccination of vectors.

Fig. 3 Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and vaccination of vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.
Fig. 3

Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and vaccination of vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.

Strategy E: Optimal vaccination and treatment of infectives vectors

The vaccination control u3 of vectors and treatment of infectives vectors are used to optimize the objective function J while we set other controls u1 and u2 to zero. We observed in Figure 4(a) and 4(b) that due to the control strategy, the number of infected humans (Ih) and infected vectors (Iv) decreases in the community. This shows that the spread of the disease can also be controlled through effective vaccination of vectors and treatment of vectors strategy. Also due to this strategy as shown in Figure 4(c), there is increase in recovered vectors.

Fig. 4 Simulations of the leptospirosis model showing the effect of the optimal strategies: Vaccination and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.
Fig. 4

Simulations of the leptospirosis model showing the effect of the optimal strategies: Vaccination and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.

Strategy G: Optimal prevention of humans and treatment of infectives vectors

We optimize the objective function J using the prevention of humans control u1 and treatment of infectives vectors control u4 while other controls u2 and u3 are set to zero. We observed in Figure 5(a) and 5(b) that due to the control strategy, the number of infected humans (Ih) and infected vectors (Iv) decreases in the community. This shows that the spread of the disease can be controlled through effective prevention of humans and treatment of vectors strategy. Due to this strategy as shown in Figure 5(c), there is increase in recovered vectors.

Fig. 5 Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.
Fig. 5

Simulations of the leptospirosis model showing the effect of the optimal strategies: Prevention of humans and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.

Strategy I: Optimal treatment of humans and treatment of infectives vectors

We optimize the objective function J using the treatment of humans control u2 and treatment of infectives vectors control u4 while other controls u1 and u3 are set to zero. We observed in Figure 6(a) and 6(b) that due to the control strategy, the number of infected humans (Ih) and infected vectors (Iv) decreases in the community. This shows that the spread of the disease can be controlled through effective treatment of humans and treatment of vectors strategy. It is obvious that from the selected best effective strategies one can not conclude which of the control strategy give optimal results. The four selected strategies however produce similar pattern and effect. Hence, there is need to further ascertain which of these strategies is most cost-effective and efficient. In the next section, the cost-effectiveness analysis is carried out.

Fig. 6 Simulations of the leptospirosis model showing the effect of the optimal strategies: Treatment of humans and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.
Fig. 6

Simulations of the leptospirosis model showing the effect of the optimal strategies: Treatment of humans and treatment of infectives vectors. The blue lines represent the cases without control, while the red lines indicate the cases with optimal control.

6 Cost effectiveness analysis

Carrying out the cost effectiveness analysis, the most cost-effective strategy to use in the control of leptospirosis disease is determined. Doing this, the differences between the costs and health outcomes of these interventions are compared (see [21]).

Based on the model simulation results, these strategies are ranked in increasing order of effectiveness. Based on the four most effective strategies observed from the numerical results, namely prevention efforts in humans and vaccination of vectors only (strategy B=u1, u3), vaccination and treatment of vectors only (strategy E=u3, u4), prevention efforts in humans and treatment of vectors only (strategy G=u1, u4) and the treatments of both humans and vectors only (strategy I=u2, u4), an ANOVA analysis on the mean costs was initially conducted.

A one - way ANOVA between the mean costs was conducted to compare the strategies. The analysis was sifnificant, [F(429, 1290)= 1,29, p=0.000441]. A post hoc comparison using Tukey HSD test indicated that the following pairs E-G, B-E and I-E were significantly different. However, G-B, G-I and B-I were not significantly different. Specifically, the results show that strategy E is recommended for cost effectiveness.

The cost-effectiveness analysis is shown below:

The difference between the total infectious individuals without control and the total infectious individuals with control was used to determine the “total number of infection averted” used in the table of cost-effectiveness analysis

StrategyTotal infection avertedTotal cost ($)
Strategy B114.0869$1795.9
Strategy E198.8027$1780.8
ICERB=1795.9114.0869=15:74ICERE=1780.81795.9198.8027114.0869=0.17824(28)

The comparison between ICER(B) and ICER(E) shows a cost saving of $0.17824 for strategy E over strategy B. The negative ICER for strategy E indicates the strategy B is “strongly dominated”. That is, strategy B is more costly and less effective than strategy E. Therefore, strategy B, the strongly dominated is excluded from the set of alternatives so it does not consume limited resources.

We exclude strategy B and compare strategy E with G. From the numerical results we have

StrategyTotal infection avertedTotal cost ($)
Strategy E198.8027$1780.8
Strategy G226.5642$3573.6

This leads to the following values for the ICER,

ICERE=198.80271780.8=8.9576ICERG=3573.61780.8226.5642198.8027=64.5786(29)

The comparison between ICER(E) and ICER(G) shows a cost saving of $8.9576 for strategy E over strategy G. There is an additional $64.57 per infection averted as we move from strategy E to G. The small value ICER for strategy E indicates the strategy G is “strongly dominated”. That is, strategy G is more costly and less effective than strategy E. Therefore, strategy G, the strongly dominated is excluded. Exclude strategy G, we now compare strategy E with I. From the numerical results we have

StrategyTotal infection avertedTotal cost ($)
Strategy E198.8027$1780.8
Strategy I239.4994$3194.7

This leads to the following values for the ICER,

ICERE=198.80271780.8=8.9576ICERI=3194.71780.8239.4994198.8027=34.7424(30)

The comparison between ICER(E) and ICER(I) shows a cost saving of $8.9576 for strategy E over strategy I. There is an additional $34.74 per infection averted as we move from strategy E to I. Similarly, the small value ICER for strategy E indicates the strategy I is “strongly dominated”. That is, strategy I is more costly and less effective than strategy E. Therefore, strategy I, the strongly dominated is excluded.

With this result therefore, it is found that strategy E (combination of vaccination u3 with treatment of infective vectors (u4) is most cost-effective of all the strategies for leptospirosis disease control.

7 Conclusion

In this paper, a deterministic model for the transmission of leptospirosis disease that includes treatment and vaccination with waning immunity is derived and analyzed. The basic reproduction number is calculated and investigated the existence and stability of equilibria as well as performed optimal control analysis of the model.

The model is found to exhibit the existence of multiple endemic equilibria. The epidemiological implication of this is that for effective control of the disease, the basic reproductive number, Rhv, should be less than a critical value less than one. The necessary conditions for the optimal control of the disease are derived and analyzed. Furthermore, the cost-effectiveness of the controls to determine the most effective strategy to curtail the spread of leptospirosis with minimum costs is carried out. Where there are limited resources, the model suggests that policy makers may adopt strategy E over other strategies which includes additional cost of preventions and treatments of humans. In conclusion, according to our model, the most cost-effective of all is the combination of vaccination and treatment of vectors only.

References

[1] Thomson J., Lin M., Halliday L., et al., Australia’s notifiable diseases status 1998, Annual report of the National Notifiable Diseases Surveillance System., 1999, 23, 11Suche in Google Scholar

[2] Smythe L., Symonds M., Dohnt M., Barnett L., Moore M., Leptospirosis surveillance report number 8 (Queensland and Australia), Surv Report 8., Jan - Dec 99, Qld health Scientific Services, Coopers Plains, Queensland, 2000Suche in Google Scholar

[3] Adams B.M., Banks H.T, Kwon H., Hien T., Dynamic multidrug therapies for HIV: Optimal and STI control approaches, Mathematical Biosciences and Engineering., 2004, 1,2, 223 - 24110.3934/mbe.2004.1.223Suche in Google Scholar

[4] Denis K., Lenhart S., Steve S., Optimal control of the chemotherapy of HIV, Journal Math. Biology., 1997, 35, 775-79210.1007/s002850050076Suche in Google Scholar

[5] Karrakchou M., Gourari R.S., Optimal control and infectiology: Application to an HIV/AIDS model, Applied Mathematics and Computation., 2006, 177, 807 - 81810.1016/j.amc.2005.11.092Suche in Google Scholar

[6] Kirschner D., Lenhart S., Serbin S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 1997, 35, 775-79210.1007/s002850050076Suche in Google Scholar

[7] Goldman S.M., Lightwood J., Cost optimization in the SIS model of infectious disease with treatment, Topics in Economic Analysis and Policy., 2002, 2 article 4.10.2202/1538-0653.1007Suche in Google Scholar

[8] Gupta N.K., Rink R.E., Optimal control of Epidemics, Mathematical Biosciences., 1973, 18, 383-39610.1016/0025-5564(73)90012-6Suche in Google Scholar

[9] Wickwire K., A note on the optimal control of carrier-borne epidemic, Journal of Applied probability., 1975, 12, 565-56810.2307/3212871Suche in Google Scholar

[10] Sethi S.P., Optimal Quarantine programmes for controlling an epidemic spread, Journal Opl. Res. Soc. Pergamon press., 1978, 29, 265-26810.1057/jors.1978.55Suche in Google Scholar

[11] Cesar C., Optimal control of an epidemic through educational campaigns, Electronic Journal of Differential Equations., 2006, 125, 1-11Suche in Google Scholar

[12] Sethi S.P., Staats W.P., Optimal control of some simple deterministic epidemic models, Journal Opl. Res. Soc. Pergamin press., 1978, 29, 129-13610.1057/jors.1978.27Suche in Google Scholar

[13] Kar T.K., Batabyal A., Stability analysis and optimal control of an SIR epidemic model with vaccination, BioSystems, 2011, 104, 2-3, 127 - 13510.1016/j.biosystems.2011.02.001Suche in Google Scholar PubMed

[14] Makinde O.D., Okosun K.O., Impact of chemo-therapy on optimal control of malaria disease with infected immigrants, BioSystems, 2011, 104(1), 32–4110.1016/j.biosystems.2010.12.010Suche in Google Scholar

[15] Okosun K.O., Makinde O.D., On a drug-resistant malaria model with susceptible individuals without access to basic amenities, Journal of Biological Physics., 2012, 38(3), 507-53010.1007/s10867-012-9269-5Suche in Google Scholar

[16] Blayneh K., Cao Y., Hee-Dae K., Optimal control of vector-borne diseases: Treatment and Prevention, Discrete and continuous dynamical systems series B., 2009, 11, 587-61110.3934/dcdsb.2009.11.587Suche in Google Scholar

[17] Rafikov M., Bevilacqua L., Wyse A.P.P., Optimal control strategy of malaria vector using genetically modified mosquitoes, Journal of Theoretical Biology., 2009, 258, 418 - 42510.1016/j.jtbi.2008.08.006Suche in Google Scholar

[18] Ainseba B., Benosman C., Optimal control for resistance and suboptimal response in CML, Mathematical Biosciences., 2010, 227(2), 81 - 9310.1016/j.mbs.2010.06.005Suche in Google Scholar

[19] Nanda S., Moore H., Lenhart S., Optimal control of treatment in a mathematical model of chronic myelogenous Leukemia, Mathematical Biosciences., 2007, 210, 14310.1016/j.mbs.2007.05.003Suche in Google Scholar

[20] Ozair M., Lashari A.A., Jung I.H., Okosun K.O., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence, Discrete Dynamics in Nature and Society., 2012, 2012, 21 pages10.1155/2012/595487Suche in Google Scholar

[21] Okosun K.O., Ouifki R., Marcus N., Optimal control strategies and cost-effectiveness analysis of a malaria model, BioSystems., 2013, 111(2), 83 - 10110.1016/j.biosystems.2012.09.008Suche in Google Scholar

[22] Zaman G., Khan M.A., Islam S., Chohan M.I., Jung I.H., Modeling dynamical interactions between leptospirosis infected vector and human population, Applied Mathematical Sciences., 2012, 6(26), 1287 - 1302Suche in Google Scholar

[23] Khan M.A., Zaman G., Islam S., Chohan M.I., Optimal campaign in leptospirosis epidemic by multiple control variables, Applied Mathematics., 2012, 3, 1655 - 166310.4236/am.2012.311229Suche in Google Scholar

[24] Driessche P.V., Watmough J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosciences., 2002, 180, 29-4810.1016/S0025-5564(02)00108-6Suche in Google Scholar

[25] Safi M.A., Garba S.M., Global stability analysis os SEIR model with Holling Type II incidence function, Computational and Mathematical Methods in Medicine., 2012, 1 - 810.1155/2012/826052Suche in Google Scholar

[26] LaSalle J.P., The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA., 1976Suche in Google Scholar

[27] Nakul C., Cushing J.M., Hyman J.M., Bifurcation Analysis of a Mathematical model for malaria transmission, SIAM J. APPL. MATH., 2006, 67(1), 24 - 4510.1137/050638941Suche in Google Scholar

[28] Joshi H.R., Lenhart S., Li M.Y., Wang L., Optimal control methods applied to disease models, Comtemporary Mathematics., 2006, 410, 187-20710.1090/conm/410/07728Suche in Google Scholar

[29] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F., The mathematical theory of optimal processes, Wiley, New York., 1962Suche in Google Scholar

[30] Fleming W.H., Rishel R.W., Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 197510.1007/978-1-4612-6380-7Suche in Google Scholar

[31] Lenhart S., Workman J.T., Optimal control applied to biological Models, Chapman and Hall10.1201/9781420011418Suche in Google Scholar

[32] Lenhart S.M., Yong J., Optimal Control for Degenerate Parabolic Equations with Logistic Growth, Nonlinear Anal., 1995, 25, 681-69810.1016/0362-546X(94)00179-LSuche in Google Scholar

[33] Abiodun G.J., Marcus N., Okosun K.O., Witbooi P.J., A model for control of HIV/AIDS with parental care, International Journal of Biomathematics., 2013, 6(2), 15 pages10.1142/S179352451350006XSuche in Google Scholar

[34] Triampo W., Baowan D., Tang I.M., Nuttavut N., Ekkabut J.W., Doungchawee G., A simple deterministic model for the spread of leptospirosis in Thailand, Int. J. Bio. Med. Sci., 2007, 2, 22 - 26Suche in Google Scholar

[35] Tangkanakul W., Smits H.L., Jatanasen S., Ashford D.A., An emerging health problem in Thailand, South Asian, J. Tropical Med. Pub. Health., 2005, 36, 281-288Suche in Google Scholar

Received: 2015-10-22
Accepted: 2016-6-29
Published Online: 2016-8-23
Published in Print: 2016-1-1

© 2016 Okosun et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Artikel in diesem Heft

  1. Regular Article
  2. A metric graph satisfying w41=1 that cannot be lifted to a curve satisfying dim(W41)=1
  3. Regular Article
  4. On the Riemann-Hilbert problem in multiply connected domains
  5. Regular Article
  6. Hamilton cycles in almost distance-hereditary graphs
  7. Regular Article
  8. Locally adequate semigroup algebras
  9. Regular Article
  10. Parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  11. Corrigendum
  12. Corrigendum to: parabolic oblique derivative problem with discontinuous coefficients in generalized weighted Morrey spaces
  13. Regular Article
  14. Some new bounds of the minimum eigenvalue for the Hadamard product of an M-matrix and an inverse M-matrix
  15. Regular Article
  16. Integral inequalities involving generalized Erdélyi-Kober fractional integral operators
  17. Regular Article
  18. Results on the deficiencies of some differential-difference polynomials of meromorphic functions
  19. Regular Article
  20. General numerical radius inequalities for matrices of operators
  21. Regular Article
  22. The best uniform quadratic approximation of circular arcs with high accuracy
  23. Regular Article
  24. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions
  25. Regular Article
  26. A note on the rate of convergence for Chebyshev-Lobatto and Radau systems
  27. Regular Article
  28. On the weakly(α, ψ, ξ)-contractive condition for multi-valued operators in metric spaces and related fixed point results
  29. Regular Article
  30. Existence of a common solution for a system of nonlinear integral equations via fixed point methods in b-metric spaces
  31. Regular Article
  32. Bounds for the Z-eigenpair of general nonnegative tensors
  33. Regular Article
  34. Subsymmetry and asymmetry models for multiway square contingency tables with ordered categories
  35. Regular Article
  36. End-regular and End-orthodox generalized lexicographic products of bipartite graphs
  37. Regular Article
  38. Refinement of the Jensen integral inequality
  39. Regular Article
  40. New iterative codes for 𝓗-tensors and an application
  41. Regular Article
  42. A result for O2-convergence to be topological in posets
  43. Regular Article
  44. A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation
  45. Regular Article
  46. Uncertainty orders on the sublinear expectation space
  47. Regular Article
  48. Generalized derivations of Lie triple systems
  49. Regular Article
  50. The BV solution of the parabolic equation with degeneracy on the boundary
  51. Regular Article
  52. Malliavin method for optimal investment in financial markets with memory
  53. Regular Article
  54. Parabolic sublinear operators with rough kernel generated by parabolic calderön-zygmund operators and parabolic local campanato space estimates for their commutators on the parabolic generalized local morrey spaces
  55. Regular Article
  56. On annihilators in BL-algebras
  57. Regular Article
  58. On derivations of quantales
  59. Regular Article
  60. On the closed subfields of Q¯~p
  61. Regular Article
  62. A class of tridiagonal operators associated to some subshifts
  63. Regular Article
  64. Some notes to existence and stability of the positive periodic solutions for a delayed nonlinear differential equations
  65. Regular Article
  66. Weighted fractional differential equations with infinite delay in Banach spaces
  67. Regular Article
  68. Laplace-Stieltjes transform of the system mean lifetime via geometric process model
  69. Regular Article
  70. Various limit theorems for ratios from the uniform distribution
  71. Regular Article
  72. On α-almost Artinian modules
  73. Regular Article
  74. Limit theorems for the weights and the degrees in anN-interactions random graph model
  75. Regular Article
  76. An analysis on the stability of a state dependent delay differential equation
  77. Regular Article
  78. The hybrid mean value of Dedekind sums and two-term exponential sums
  79. Regular Article
  80. New modification of Maheshwari’s method with optimal eighth order convergence for solving nonlinear equations
  81. Regular Article
  82. On the concept of general solution for impulsive differential equations of fractional-order q ∈ (2,3)
  83. Regular Article
  84. A Riesz representation theory for completely regular Hausdorff spaces and its applications
  85. Regular Article
  86. Oscillation of impulsive conformable fractional differential equations
  87. Regular Article
  88. Dynamics of doubly stochastic quadratic operators on a finite-dimensional simplex
  89. Regular Article
  90. Homoclinic solutions of 2nth-order difference equations containing both advance and retardation
  91. Regular Article
  92. When do L-fuzzy ideals of a ring generate a distributive lattice?
  93. Regular Article
  94. Fully degenerate poly-Bernoulli numbers and polynomials
  95. Commentary
  96. Commentary to: Generalized derivations of Lie triple systems
  97. Regular Article
  98. Simple sufficient conditions for starlikeness and convexity for meromorphic functions
  99. Regular Article
  100. Global stability analysis and control of leptospirosis
  101. Regular Article
  102. Random attractors for stochastic two-compartment Gray-Scott equations with a multiplicative noise
  103. Regular Article
  104. The fuzzy metric space based on fuzzy measure
  105. Regular Article
  106. A classification of low dimensional multiplicative Hom-Lie superalgebras
  107. Regular Article
  108. Structures of W(2.2) Lie conformal algebra
  109. Regular Article
  110. On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs
  111. Regular Article
  112. Parabolic Marcinkiewicz integrals on product spaces and extrapolation
  113. Regular Article
  114. Prime, weakly prime and almost prime elements in multiplication lattice modules
  115. Regular Article
  116. Pochhammer symbol with negative indices. A new rule for the method of brackets
  117. Regular Article
  118. Outcome space range reduction method for global optimization of sum of affine ratios problem
  119. Regular Article
  120. Factorization theorems for strong maps between matroids of arbitrary cardinality
  121. Regular Article
  122. A convergence analysis of SOR iterative methods for linear systems with weak H-matrices
  123. Regular Article
  124. Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions
  125. Regular Article
  126. Some congruences for 3-component multipartitions
  127. Regular Article
  128. Bound for the largest singular value of nonnegative rectangular tensors
  129. Regular Article
  130. Convolutions of harmonic right half-plane mappings
  131. Regular Article
  132. On homological classification of pomonoids by GP-po-flatness of S-posets
  133. Regular Article
  134. On CSQ-normal subgroups of finite groups
  135. Regular Article
  136. The homogeneous balance of undetermined coefficients method and its application
  137. Regular Article
  138. On the saturated numerical semigroups
  139. Regular Article
  140. The Bruhat rank of a binary symmetric staircase pattern
  141. Regular Article
  142. Fixed point theorems for cyclic contractive mappings via altering distance functions in metric-like spaces
  143. Regular Article
  144. Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space
  145. Regular Article
  146. An S-type upper bound for the largest singular value of nonnegative rectangular tensors
  147. Regular Article
  148. Fuzzy ideals of ordered semigroups with fuzzy orderings
  149. Regular Article
  150. On meromorphic functions for sharing two sets and three sets in m-punctured complex plane
  151. Regular Article
  152. An incremental approach to obtaining attribute reduction for dynamic decision systems
  153. Regular Article
  154. Very true operators on MTL-algebras
  155. Regular Article
  156. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations
  157. Regular Article
  158. A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors
  159. Regular Article
  160. Robust dynamic output feedback fault-tolerant control for Takagi-Sugeno fuzzy systems with interval time-varying delay via improved delay partitioning approach
  161. Regular Article
  162. New bounds for the minimum eigenvalue of M-matrices
  163. Regular Article
  164. Semi-quotient mappings and spaces
  165. Regular Article
  166. Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces
  167. Regular Article
  168. A family of singular functions and its relation to harmonic fractal analysis and fuzzy logic
  169. Regular Article
  170. Solution to Fredholm integral inclusions via (F, δb)-contractions
  171. Regular Article
  172. An Ulam stability result on quasi-b-metric-like spaces
  173. Regular Article
  174. On the arrowhead-Fibonacci numbers
  175. Regular Article
  176. Rough semigroups and rough fuzzy semigroups based on fuzzy ideals
  177. Regular Article
  178. The general solution of impulsive systems with Riemann-Liouville fractional derivatives
  179. Regular Article
  180. A remark on local fractional calculus and ordinary derivatives
  181. Regular Article
  182. Elastic Sturmian spirals in the Lorentz-Minkowski plane
  183. Topical Issue: Metaheuristics: Methods and Applications
  184. Bias-variance decomposition in Genetic Programming
  185. Topical Issue: Metaheuristics: Methods and Applications
  186. A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems
  187. Special Issue on Recent Developments in Differential Equations
  188. Modeling of vibration for functionally graded beams
  189. Special Issue on Recent Developments in Differential Equations
  190. Decomposition of a second-order linear time-varying differential system as the series connection of two first order commutative pairs
  191. Special Issue on Recent Developments in Differential Equations
  192. Differential equations associated with generalized Bell polynomials and their zeros
  193. Special Issue on Recent Developments in Differential Equations
  194. Differential equations for p, q-Touchard polynomials
  195. Special Issue on Recent Developments in Differential Equations
  196. A new approach to nonlinear singular integral operators depending on three parameters
  197. Special Issue on Recent Developments in Differential Equations
  198. Performance and stochastic stability of the adaptive fading extended Kalman filter with the matrix forgetting factor
  199. Special Issue on Recent Developments in Differential Equations
  200. On new characterization of inextensible flows of space-like curves in de Sitter space
  201. Special Issue on Recent Developments in Differential Equations
  202. Convergence theorems for a family of multivalued nonexpansive mappings in hyperbolic spaces
  203. Special Issue on Recent Developments in Differential Equations
  204. Fractional virus epidemic model on financial networks
  205. Special Issue on Recent Developments in Differential Equations
  206. Reductions and conservation laws for BBM and modified BBM equations
  207. Special Issue on Recent Developments in Differential Equations
  208. Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances
Heruntergeladen am 19.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/math-2016-0053/html
Button zum nach oben scrollen