Startseite Simulation of polyurethane foaming process based on physical property parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of polyurethane foaming process based on physical property parameters

  • Yang Yu , Xuebin Chang , Fengfu Yin EMAIL logo und Lin Li EMAIL logo
Veröffentlicht/Copyright: 15. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

To address the complexity and high degree of idealization in the numerical simulation of polyurethane foaming in thermal insulation layers, a simulation model based on material parameters was developed. This model focuses on the dynamic variations in density and viscosity during the foaming process. Material properties are defined using a User-Defined Function (UDF), and the accuracy of the model was validated by comparing simulation results with experimental data. The results show that the average errors in simulated density and viscosity changes are 5.81 % and 7.94 %, respectively, when compared with experimental data. These results indicate that the model accurately captures the evolution of polyurethane foam properties during foaming. Finally, the accuracy of the model is further demonstrated through the application of the model to a specific refrigerator structure as a case study. This study provides valuable insights for analyzing the foaming and molding behavior of polyurethane in insulation layers for optimized process design.


Corresponding author: Fengfu Yin and Lin Li, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China, E-mail: (F. Yin), (L. Li).

Acknowledgments

The authors wish to thank Shengqiang Jiao for his guidance and support in ensuring the proper formatting of this work.

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: The first author Yang Yu: Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Data curation, Conceptualization. The second author Xuebin Chang: Writing – original draft, Data curation. The third and the co-corresponding author Fengfu Yin: Project administration, Investigation, Funding acquisition. The fourth and the corresponding author Lin Li: Writing – review & editing, Supervision, Project administration, Methodology, Formal analysis, Conceptualization. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This research was supported by the National Key R&D Program of China (2020YFB1713001).

  7. Data availability: Not applicable.

References

Akindoyo, J.O., Beg, M.D.H., Ghazali, S., Islam, M.R., Jeyaratnam, N., and Yuvaraj, A.R. (2016). Polyurethane types, synthesis and applications–a review. Rsc Adv 6: 114453–114482, https://doi.org/10.1039/C6RA14525F.Suche in Google Scholar

Al-Moameri, H., Zhao, Y., Ghoreishi, R., and Suppes, G.J. (2016). Simulation blowing agent performance, cell morphology, and cell pressure in rigid polyurethane foams. Ind. Eng. Chem. Res. 55: 2336–2344, https://doi.org/10.1021/acs.iecr.5b04711.Suche in Google Scholar

Abdessalam, H., Abbes, B., Li, Y., Guo, Y.Q., Kwassi, E., and Romain, J.L. (2015). Simulation of polyurethane foam expansion with finite pointset and volume of fluid methods: implementation and experimental validation. Mater. Res. Innovations 19: S8-149–S8-156, https://doi.org/10.1179/1432891715Z.0000000001646.Suche in Google Scholar

Abbassi, W., Besbes, S., Elhajem, M., Aissia, H.B., and Champagne, J.Y. (2018). Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF). Comput. Fluids 161: 47–59, https://doi.org/10.1016/j.compfluid.2017.11.010.Suche in Google Scholar

Bikard, J., Bruchon, J., Coupez, T., and Vergnes, B. (2005). Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method. J. Mater. Sci. 40: 5875–5881, https://doi.org/10.1007/s10853-005-5022-9.Suche in Google Scholar

Bikard, J., Bruchon, J., Coupez, T., and Silva, L. (2007). Numerical simulation of 3D polyurethane expansion during manufacturing process. Colloids Surf., A 309: 49–63, https://doi.org/10.1016/j.colsurfa.2007.04.025.Suche in Google Scholar

Brondi, C., Di Caprio, M.R., Di Maio, E., Mosciatti, T., Cavalca, S., Parenti, V., and Iannace, S. (2020). Microcellular thermosetting polyurethane foams. Int. Polym. Proc. 35: 326–330, https://doi.org/10.3139/217.3936.Suche in Google Scholar

Gwon, J.G., Kim, S.K., and Kim, J.H. (2016). Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 89: 448–454, https://doi.org/10.1016/j.matdes.2015.10.017.Suche in Google Scholar

Geier, S., Winkler, C., and Piesche, M. (2009). Numerical simulation of mold filling processes with polyurethane foams. Chem. Eng. Technol. 32: 1438–1447, https://doi.org/10.1002/ceat.200900202.Suche in Google Scholar

Geier, S. and Piesche, M. (2014a). Macro and micro-scale modeling of polyurethane foaming processes. AIP Conf. Proc. 1593: 560–564, https://doi.org/10.1063/1.4873844.Suche in Google Scholar

Geier, S. and Piesche, M. (2014b). Coupled macro and micro-scale modeling of polyurethane foaming processes. J. Comput. Multiph. Flows. 6: 377–390, https://doi.org/10.1260/1757-482X.6.4.377.Suche in Google Scholar

Ireka, I.E., Niedziela, D., Schäfer, K., Tröltzsch, J., Steiner, K., Helbig, F., Chinyoka, T., and Kroll, L. (2015). Computational modelling of the complex dynamics of chemically blown polyurethane foam. Phys. Fluids 27, https://doi.org/10.1063/1.4935788.Suche in Google Scholar

Jiang, Y., Xu, J., Liu, M., and Fu, T. (2024). Simulation study and optimization strategies for vacuum infusion of GFRP hoses based on resin time-viscosity variables. Polymers 16: 1328, https://doi.org/10.3390/polym16101328.Suche in Google Scholar PubMed PubMed Central

Khang, T.H. and Ariff, Z.M. (2014). Mold filling simulation dependence on material data input for injection molding process of natural rubber compound. Int. Polym. Proc. 29: 325–331, https://doi.org/10.3139/217.2934.Suche in Google Scholar

Lee, L.J., Zeng, C., Cao, X., Han, X., Shen, J., and Xu, G. (2005). Polymer nanocomposite foams. Compos. Sci. Technol. 65: 2344–2363, https://doi.org/10.1016/j.compscitech.2005.06.016.Suche in Google Scholar

Li, X., Peng, C., Ao, Y., Hao, M., Zhong, Y., and Zhang, B. (2024). Impact of composition ratio on the expansion behavior of polyurethane grout. Materials 17: 1835, https://doi.org/10.3390/ma17081835.Suche in Google Scholar PubMed PubMed Central

Michaeli, W., Hoffmann, S., Kratz, M., and Webelhaus, K. (2022). Simulation opportunities by a three-dimensional calculation of injection moulding based on the finite element method. Int. Polym. Proc. 16: 398–403, https://doi.org/10.1515/ipp-2001-0011.Suche in Google Scholar

Mitani, T. and Hamada, H. (2003). Prediction of flow patterns in the polyurethane foaming process by numerical simulation considering foam expansion. Polym. Eng. Sci. 43: 1603–1612, https://doi.org/10.1002/pen.10134.Suche in Google Scholar

Mukundan, A.A., Menard, T., Motta, D.B.C.J., and Berlemont, A. (2020). A 3D Moment of fluid method for simulating complex turbulent multiphase flows. Comput. Fluids. 198: 104364, https://doi.org/10.1016/j.compfluid.2019.104364.Suche in Google Scholar

Niyogi, D., Kumar, R., and Gandhi, K.S. (2014). Modeling of bubble-size distribution in water and freon co‐blown free rise polyurethane foams. J. Appl. Polym. Sci. 131: 9098–9110, https://doi.org/10.1002/app.40745.Suche in Google Scholar

Nian, X., Liu, H., Li, Y., Liu, Y., Guo, C., and Qu, F. (2017). Numerical simulation of the fluid traverses the porous media by single domain method based on UDF. Procedia Eng. 205: 3946–3953, https://doi.org/10.1016/j.proeng.2017.09.851.Suche in Google Scholar

Özdemir, İ.B. and Akar, F. (2018). 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry. Heat Mass Trans 54: 1281–1288, https://doi.org/10.1007/s00231-017-2232-z.Suche in Google Scholar

Raj, B.S. and Chandy, A.J. (2024). Analyzing pellet agglomeration in underwater polymer extrusion pelletizers: a numerical simulation study. Int. Polym. Proc. 39: 80–98, https://doi.org/10.1515/ipp-2023-4404.Suche in Google Scholar

Rao, R.R., Mondy, L.A., Noble, D.R., Moffat, H.K., Adolf, D.B., and Notz, P.K. (2012). A level set method to study foam processing: a validation study. Int. J. Numer. methods Fluids 68: 1362–1392, https://doi.org/10.1002/fld.2671.Suche in Google Scholar

Rojas, A.J., Marciano, J.H., and Williaems, R.J. (1982). Rigid polyurethane foams: a model of the foaming process. Polym. Eng. Sci. 22: 840–844, https://doi.org/10.1002/pen.760221310.Suche in Google Scholar

Samkhaniani, N., Gharehbaghi, A., and Ahmadi, Z. (2013). Numerical simulation of reaction injection molding with polyurethane foam. J. Cell. Plast. 49: 405–421, https://doi.org/10.1177/0021955X13485594.Suche in Google Scholar

Seo, D. and Youn, J.R. (2005). Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method. Polymer 46: 6482–6493, https://doi.org/10.1016/j.polymer.2005.03.126.Suche in Google Scholar

Schäfer, K., Nestler, D., Tröltzsch, J., Ireka, I., Niedziela, D., Steiner, K., and Kroll, L. (2020). Numerical studies of the viscosity of reacting polyurethane foam with experimental validation. Polymers 12: 105, https://doi.org/10.3390/polym12010105.Suche in Google Scholar PubMed PubMed Central

Sadrhosseini, H. and Bazkhane, S. (2017). Simplified model for polyurethane foaming in porous media. Int. J. Numer. Methods Heat Fluid Flow 27: 142–155, https://doi.org/10.1108/HFF-08-2015-0344.Suche in Google Scholar

Verhoeven, V.W.A., Padsalgikar, A.D., Ganzeveld, K.J., and Janssen, L.P.B.M. (2006). The reactive extrusion of thermoplastic polyurethane and the effect of the depolymerization reaction. Int. Polym. Proc. 21: 295–308, https://doi.org/10.3139/217.0101.Suche in Google Scholar

Wang, Z., Wang, C., Gao, Y., Li, Z., Shang, Y., and Li, H. (2023). Porous thermal insulation polyurethane foam materials. Polymers 15: 3818, https://doi.org/10.3390/polym15183818.Suche in Google Scholar PubMed PubMed Central

Yang, W.J., Lee, G.Y., and Park, S.H. (2019). Analysis on chemical and physical behaviors of polyurethane foam for prediction of deformation of refrigerator panels. Int. J. Precis. Eng. Man 20: 2041–2049, https://doi.org/10.1007/s12541-019-00159-0.Suche in Google Scholar

Yin, X., Zarikos, I., Karadimitriou, N.K., Raoof, A., and Hassanizadeh, S.M. (2019). Direct simulations of two-phase flow experiments of different geometry complexities using volume-of-fluid (VOF) method. Chem. Eng. Sci. 195: 820–827, https://doi.org/10.1016/j.ces.2018.10.029.Suche in Google Scholar

Zhang, H., Fang, W.Z., Li, Y.M., and Tao, W.Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Appl. Therm. Eng. 115: 528–538, https://doi.org/10.1016/j.applthermaleng.2016.12.057.Suche in Google Scholar

Zhang, X., Wang, Z., Fu, Y., Wang, Z., and Xie, H. (2024a). Thermal, mechanical property and flame-retardant analysis of bio-based rigid polyurethane foam modified with expandable graphite. Case Stud Therm Eng 61: 105112, https://doi.org/10.1016/j.csite.2024.105112.Suche in Google Scholar

Zhang, X., Guan, Q., Xiao, Q., Wang, Z., and Xie, H. (2024b). Enhanced thermal and mechanical properties of flame-retardant expandable graphite modified silk fibroin-based rigid polyurethane foam. Case Stud Therm Eng 64: 105418, https://doi.org/10.1016/j.csite.2024.105418.Suche in Google Scholar

Zhang, X., Wang, Z., Ding, S., Wang, Z., and Xie, X. (2024c). Improved thermal insulation, mechanical properties, energy absorption and flame retardancy of bio-based rigid polyurethane foam modified with calcium hydroxystannate. Constr. Build. Mater. 456: 139251, https://doi.org/10.1016/j.conbuildmat.2024.139251.Suche in Google Scholar

Zhang, X., Guan, Q., Ding, S., Wang, Z., and Xie, H. (2025a). Enhanced thermal stability, flame retardancy, and mechanical properties of casein-modified rigid polyurethane foams. Case Stud Therm Eng 69: 106039, https://doi.org/10.1016/j.csite.2025.106039.Suche in Google Scholar

Zhang, X., Qu, X., Guan, Q., Li, R., Wang, Z., and Xie, H. (2025b). Rigid polyurethane foam with improved thermal stability and flame retardancy modified by barium phytate and zinc oxide. Case Stud Therm Eng 72: 106261, https://doi.org/10.1016/j.csite.2025.106261.Suche in Google Scholar

Zhang, X., Guan, Q., Ding, S., Wang, Z., and Xie, H. (2025c). Improved thermal stability, flame retardancy and mechanical properties of casein-based rigid polyurethane foam modified with organic sepiolite. Constr. Build. Mater. 479: 141517, https://doi.org/10.1016/j.conbuildmat.2025.141517.Suche in Google Scholar

Received: 2025-05-13
Accepted: 2025-07-31
Published Online: 2025-09-15
Published in Print: 2025-11-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Review Article
  3. Digitalization techniques in polymer processing – a review
  4. Research Articles
  5. Investigation on the extrusion-induced geometric distortion of three-lumen medical micro-catheters through numerical simulation
  6. Hemp-PEEK composites: surface treatment, processing, and performance
  7. Simulation of polyurethane foaming process based on physical property parameters
  8. Evaluation of mechanical properties of basalt and aramid fiber reinforced hybrid composites with polyvinyl chloride (PVC) core material
  9. The effect of styrene isoprene diblock content on hot melt label pressure-sensitive adhesives properties
  10. Dual nozzle electrospinning based on piezoelectric-conductive composites preparation: simulation and experiment
  11. Enhancing the strength and surface quality of carbon fiber reinforced PLA composite parts 3D printed using fused deposition modelling
  12. Combining Mag-Org fillers with epoxy-functionalised graphene to enhance the thermal stability of the polyvinyl chloride (PVC) based matrix while optimising its mechanical properties
  13. Performance enhancement of ternary epoxy hybrid composites with rice husk bio-filler
  14. Optimizing anisotropy in injection-moulded poly(methyl methacrylate) parts using DOE and simulation
  15. Hybrid biocomposites based on PLA/pine fiber/CaCO3
  16. Enhancement of mode I/II fracture toughness in basalt/Kevlar hybrid composites via multiwall carbon nanotube integration
  17. Quick assessment of melt flow index in hybrid bio-composite filaments for bio additive manufacturing
  18. Preparation, flame retardancy, and phase-change kinetics of OMMT/chitosan composite phase-change capsules
Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2025-0047/html
Button zum nach oben scrollen